Features

® High Performance, Low Power Atmel® AVR® 8-Bit Microcontroller
® Advanced RISC Architecture
— 130 Powerful Instructions — Most Single Clock Cycle Execution
— 32 x 8 General Purpose Working Registers
— Fully Static Operation
— Up to 16MIPS Throughput at16MHz (ATmega169A/169PA/649A/649P)
— Up to 20 MIPS Throughput at 20MHz (ATmega329A/329PA/3290A/3290PA/6490A/6490P)
— On-Chip 2-cycle Multiplier
® High Endurance Non-volatile Memory segments
- In-System Self-programmable Flash Program Memory

* 16Kbytes (ATmega169A/ATmegai169PA)
* 32Kbytes (ATmega329A/ATmega329PA/ATmega3290A/ATmega3290PA)
* 64Kbytes (ATmega649A/ATmega649P/ATmega6490A/ATmega6490P)
- EEPROM
* 512bytes (ATmega169A/ATmega169PA)
* 1Kbytes (ATmega329A/ATmega329PA/ATmega3290A/ATmega3290PA)
* 2Kbytes (ATmega649A/ATmega649P/ATmega6490A/ATmega6490P)
Internal SRAM
¢ 1Kbytes (ATmega169A/ATmegai69PA)
* 2Kbytes (ATmega329A/ATmega329PA/ATmega3290A/ATmega3290PA)
* 4Kbytes (ATmega649A/ATmega649P/ATmega6490A/ATmega6490P)
Write/Erase cyles: 10,000 Flash/100,000 EEPROM
Data retention: 20 years at 85°C/100 years at 25°C("
Optional Boot Code Section with Independent Lock Bits
¢ In-System Programming by On-chip Boot Program
* True Read-While-Write Operation
- Pr%gramming Lock for Software Security
® QTouch” library support
— Capacitive touch buttons, sliders and wheels
— QTouch and QMatrix acquisition
— Up to 64 sense channels

® JTAG (IEEE std. 1149.1 compliant) Interface

— Boundary-scan Capabilities According to the JTAG Standard

— Extensive On-chip Debug Support

— Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
® Peripheral Features

— 4 x 25 Segment LCD Driver
(ATmega169A/ATmegai169PA/ATmega329A/ATmega329PA/ATmega649A/ATmega649P)
4 x 40 Segment LCD Driver (ATmega3290A/ATmega3290PA/ATmega6490A/ATmega6490P)
Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode
One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode
Real Time Counter with Separate Oscillator
Four PWM Channels
8-channel, 10-bit ADC
Programmable Serial USART
Master/Slave SPI Serial Interface
Universal Serial Interface with Start Condition Detector
Programmable Watchdog Timer with Separate On-chip Oscillator
On-chip Analog Comparator

— Interrupt and Wake-up on Pin Change
® Special Microcontroller Features

— Power-on Reset and Programmable Brown-out Detection

- Internal Calibrated Oscillator

— External and Internal Interrupt Sources

— Five Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, and Standby
® |/O and Packages

— 54/69 Programmable 1/O Lines

— 64/100-lead TQFP, 64-pad QFN/MLF, and 64-pad DRQFN

® Speed Grade:
— ATmega169A/169PA/649A/649P:
*0-16MHz @ 1.8 - 5.5V,
— ATmega3290A/3290PA/6490A/6490P:
*0-20MHz @ 1.8 - 5.5V,
* Temperature range:
— -40°C to 85°C Industrial
® Ultra-Low Power Consumption (picoPower devices)
— Active mode:
* 1MHz, 1.8V: 215pA
* 32kHz, 1.8V: 8pA (including Oscillator)
* 32kHz, 1.8V: 25pA (including Oscillator and LCD)
— Power-down Mode:
*0.1pA at 1.8V
— Power-save Mode:
¢ 0.6pA at 1.8V (Including 32kHz RTC)
¢ 750nA at 1.8V

AIMEL

AIMEL

I ®

8-bit Atmel
Microcontroller
with 16/32/64K
Bytes In-System
Programmable
Flash

ATmegail69A
ATmegal69PA
ATmega329A
ATmega329PA
ATmega649A
ATmega649P
ATmega3290A
ATmega3290PA
ATmega6490A
ATmega6490P

8284D-AVR-6/11

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

1. Pin Configurations
1.1 Pinout - 64A (TQFP) and 64M1 (QFN/MLF)

Figure 1-1. Pinout ATmega169A/ATmega169PA/ATmega329A/ATmega329PA/ATmega649A/ATmega649P

T »® O =
(@] = [a) [a)
-~ ~ ~ =~ £ B EBE & S © &
8 &6 &6 8 3 & &8 & S = =
[a) [m) o (m) [m)] [a) (a) [a)] O (@] (@]
QO 4o < £ £ £ £ £ < < A e e Q
S Z E 2 @ ¥ P2 F e ek z 38 2 x ¥
< (O] < o o [a o o o o o (O] > o o o
[3] [8] [$] [=] [3] [3] [B] [B] [8] [8] [3] [3] [§] [=] [3] [2]
LcocaP [1] 48] PA3 (COM3)
(RXD/PCINTO) PEO [2 47| PA4 (SEGO
H INDEX CORNER 47] Pad (sEGO)
(TXD/PCINT1) PET E E PAS5 (SEG1)
(XCK/AINO/PCINT2) PE2 [4] 45 PAG (SEG2)
(AIN1/PCINT3) PE3 [5] 4] PA7 (SEGS)
(USCK/SCLIPCINT4) PE4 [6] 43] Pa2 (SEG4)
(DI/SDA/PCINT5) PE5 E E PC7 (SEGS)
(DO/PCINTS) PES [8] A R 41] Pce (sEGE)
(CLKO/PCINT?) PE7 [9] 40] Pes (sEG7)
(SS/PCINT8) PBO [10 39] PC4 (SEGE)
(SCK/PCINT9) PB1 [11] 38] PC3 (SEGY)
(MOSI/PCINT10) PB2 E 37] PC2 (SEG10)
(MISO/PCINT11) PB3 E §| PC1 (SEG11)
(OCOA/PCINT12) PB4 [14] 35| PCO (SEG12)
(OC1A/PCINT13) PB5 15| 3] pa1(sEG13)
(OC1B/PCINT14) PB6 [16| 33] pGo (sEG14)
B 2] 8] 5] (&R B & & & & [R] 8] =] &)
5 8 o 8 32 ¥ 2 8 3 8 823 38 8 8
o 4o o o (>J % |<£ |<£ o o o o o o oo oo
5 T @ |F X X @ & &8 5 ® < © ©
~ o] [aY] L — — [aV] [aN] [aY] — — — — —
E 6 ¢ |@ N - 6 6 6 0 6 6 0 0
Z W w |W O O m W W W W W w o
o o o & 8 3 0 20 0 00 & 8 @
S £ e E £ & £
o o Z
(&} =z T
o

AIMEL 2

8284D-AVR-6/11 ——— ——— —]

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

1.2 Pinout - 100A (TQFP)

Figure 1-2. Pinout ATmega3290A/ATmega3290PA/ATmega6490A/ATmega6490P

TQFP

eE e

g 6 ¢ O

o~~~ w wowow

28 = Q0 Q0

S EEE Q8 88
s g@ 3w e N EEEE sca
O O O O O O O 0O = = = = = = =
O O o0 a0 o oo aQ O O O O O O O
ggup<ssss<s e 0 0O0C
9SfeEprfereLeehzeereeyizzez82¢2x¢
< < « o OO OO o oo OO0 oa0 o oo o0 ¢ > 0.0 o a
ElElElEElE E R E F] E] @] [E] EE]E]E]][]] E] =]] [R] [E]

Leocap [1] 75] PA3 (COMS)
(RXD/PCINTO) PEO [2] 74] PA4 (SEGO)
(TXD/PCINT1) PE1 E INDEX CORNER E PA5 (SEG1)

(XCK/AINO/PCINT2) PE2 [4] 72] PA6 (SEG2)
(AIN1/PCINT3) PE3 [5] 71] PA7 (SEG3)
(USCK/SCLPCINT4) PE4 [6] 70] PG2 (SEG4)
(DISDA/PCINTS) PE5 [7] 69) PC7 (SEGS)
(DO/PCINT6) PE6 [8] 68] PC6 (SEG6)
(CLKO/PCINT?) PE7 [3] 67 DbNne
vee i [66] PH3 (PCINT19/SEG?)
GND [i1] 65 PH2 (PCINT18/SEGS)
DNC [i2] [64] PH1 (PCINT17/SEGY)
(PCINT24/SEG35) PJ0 [13 63] PHO (PCINT16/SEG10)
(PCINT25/SEG34) PJ1 [14 62 Dbne
DNC 5] 61] Done
DNC 1§ 0] Dbne
DNC [17] EE e
DNC i8] 58] PC5 (SEGT1)
(SSIPCINT8) PBO [19] 57] PC4(SEG12)
(SCK/PCINTE) PB1 [20] 56] PC3(SEG13)
(MOSIPCINT10) PB2 [21] 55] PC2(SEG14)
(MISO/PCINT11) PB3 [22 54 PC1(SEG1S5)
(OCOA/PCINT12) PB4 [23] 53] PCo(sEG16)
(OC1A/PCINT13) PB5 |24 52] PG1(SEG17)
(OC1B/PCINT14) PB6 [25] 51] PGo (SEG18)
El &l =8 S S S S BB E]EERIEENENE = =] R
N O ® T 1L O AN~ O 0 & O F BV O© 09 = A O I W O I~
O O - S ol
5 @« h x X 53828 §) T 86 I ®qd - S5
£ 380 83 8636 & T8 33336
P4 w w ',-J':J 3 3 % (I-H % % IE'nJ L W W W W W W o
S 2o 3 2 20908 Q0B BDDDD
T Ce e e @52238 gz¢g
I £ £ - = E E E E E 5 £
8 zZ z z z z e =
) eEEEE

Note: The large center pad underneath the QFN/MLF packages is made of metal and internally connected to GND. It should be sol-
dered or glued to the board to ensure good mechanical stability. If the center pad is left unconnected, the package might loosen
from the board.

ATMEL s

8284D-AVR-6/11

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

1.3 Pinout - 64MC (DRQFN)

Figure 1-3. Pinout ATmega169A/ATmega169PA

Top view Bottom view
< o o = o o ® © S N % 2 8 5 & 9 3
gﬁgﬁgﬁgggﬁgﬁgﬁggg ﬁﬁﬁéﬁﬁﬁﬁﬁgﬁﬁﬁﬁﬁﬁﬁ
74 ool s
Al A25 A5 pTTTTmmmmmmsssssssssss " = A
B1 B22 B22 [| =] B1
A2 A24 FYYI | H [A
B2 B21 B21 [| B = | B2
A3 o A23 A3 ' g M~
B3 B20 B20 [| : [B3
A4 A22 A22 — ' g M
B4 B19 B19 | R = | B4
A5 A21 A21 4 H 0
BS B18 B18 a ' a BS
A6 A20 a0 = ' O re
B6 B17 B17 [| o B6
A7 A19 TR = ' 0
B7 Bi6 Bi6 [| o B7
A8 A18 LI = o, a g s
0nnnnnononan

A9
B8
A10
B9
A1
B10
Al2
B11
A13
B2
Al4
B13
A15
B4
A16
B15
A17

Table 1-1. DRQFN-64 Pinout ATmega169A/ATmega169PA

A1 PEO A9 PB7 A18 PG1 (SEG13) A26 PA2 (COM2)

B1 VLCDCAP B8 PB6 B16 PGO (SEG14) B23 PA3 (COM3)

A2 PE1 A10 PG3 A19 PCO (SEG12) A27 PA1 (COM1)

B2 PE2 B9 PG4 B17 PC1 (SEG11) B24 PAO (COMO)

A3 PE3 Al RESET A20 PC2 (SEG10) A28 VCC

B3 PE4 B10 vVCC B18 PC3 (SEG9) B25 GND

A4 PE5 A12 GND A21 PC4 (SEGS8) A29 PF7

B4 PE6 B11 XTAL2 (TOSC2) B19 PC5 (SEG?7) B26 PF6

A5 PE7 A13 XTAL1 (TOSC1) A22 PC6 (SEG6) A30 PF5

B5 PBO B12 PDO (SEG22) B20 PC7 (SEGS5) B27 PF4

A6 PB1 A14 PD1 (SEG21) A23 PG2 (SEG4) A31 PF3

B6 PB2 B13 PD2 (SEG20) B21 PA7 (SEG3) B28 PF2

A7 PB3 A15 PD3 (SEG19) A24 PA6 (SEG2) A32 PF1

B7 PB5 B14 PD4 (SEG18) B22 PA4 (SEGO) B29 PFO

A8 PB4 A16 PD5 (SEG17) A25 PA5 (SEG1) A33 AREF
B15 PD7 (SEG15) B30 AvVCC
A17 PD6 (SEG16) A34 GND

AIMEL 4

8284D-AVR-6/11 ——— ——— —]

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

2. Overview

The ATmega169A/169PA/329A/329PA/3290A/3290PA/649A/649P/6490A/6490P is a low-power CMOS 8-bit microcon-
troller based on the Atmel®?AVR® enhanced RISC architecture. By executing powerful instructions in a single clock cycle,
the ATmega169A/169PA/329A/329PA/3290A/3290PA/649A/649P/6490A/6490P achieves throughputs approaching 1
MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

21 Block Diagram

Figure 2-1. Block Diagram

= 4 5 Dﬁ
PFO - PF7 PAO - PA7 PCO - PC7 2 z
GND vee A X X
NN
Y Y v
PORTF DRIVERS PORTA DRIVERS | PORTC DRIVERS |
DATA REGISTEF\ DATA DIR. DATA REGISTER DATA DIR. DATA REGISTER DATA DIR.
REG. PORTF PORTA REG. PORTA PORTC REG. PORTC
i 8-BIT DATA BUS i
| —>
AVCC ¢
[i<
AGND- > ADC CALIB.OSC
i < INTERNAL
AREF | OSCILLATOR
i > |
| J _______ _L_ __________________ L OSCILLATOR [
!] 1 |
! VAN TAG TAP | 1 $| PROGRAM | STACK] WATCHDOG
' M eI ' COUNTER [€ POINTER [€ ' > TIMER TIMING AND
' le—| .z L i et S S CONTROL v Y
-« > le— T i 4
; <2l a oG :I > CU CONTROI CONTROLLERV
< le—] <& | PROGRAM SRAM MCU CONTROL
| o] gg ON-CHIP DEBUGL | FLASH REGISTER DRIVER
< : > 5 jle— " [
DIV I Bl sl 5 SELRERTEEES
< 1
o 2 BO%"(‘:E’\’:‘RV' ! INSTRUCTION GENERAL | TIMER, |« N
I« E ez ' REGISTER L >l 1 COUNTERS -
i £ & PURPOSE
< o [! REGISTERS |
| o z le] I
| le> o F | x
s [o [<7] PROGRAMMING INSTRUCTION I v ' INTERRUPT
- N =" DECODER L Z ' UNIT >
[< T T T 1
| <> O ¢ i
! 1 [
' — . — CONTROL I @
| <] LINES \ EEPROM @
' l— .2 ' o«
- e |
T
P le—]{ <% [« 1
4 &g STATUS i
d] 2 f«]°F AVR CPU REGISTER i
g o e 1 || L - T=——-—-—-_
o <« »
v) g
S «tedn 2 ra USART UNIVERSAL SPI
' S W SERIAL INTERFACE
< > o @
i o v 4 Ay
PEVARY OF [« v v
i
| ="
| <
| R3E 5 Lo ! ! ! ! j ! te 4
o
! o< DATA REGISTER DATA DIR. DATA REGISTEH DATA DIR. DATA REGISTER DATA DIR DATA REG. | | DATA DIR. !
! 2Z PORTE REG. PORTE REG. PORTB PORTD REG. PORTD PORTG ||REG. PORTG !
o
| 57T IT LN DT LU bibibee ST WU
1 (&) 1
| i
' | PORTE DRIVERS PORTB DRIVERS PORTD DRIVERS PORTG DRIVERS | |
| i
i i
i i
i
777777777777777777777777777777 N VIIIIIIIIIIII%'A 77777777777777747777'777771
vYVYY Y Y VYV VY YV OV VY
PEO - PE7 PBO - PB7 PDO - PD7 PGO - PG4

The AVR core combines a rich instruction set with 32 general purpose working registers. All the
32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent
registers to be accessed in one single instruction executed in one clock cycle. The resulting

AIMEL 5

&

8284D-AVR-6/11

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

8284D-AVR-6/11

architecture is more code efficient while achieving throughputs up to ten times faster than con-
ventional CISC microcontrollers.

The ATmega169A/169PA/329A/329PA/3290A/3290PA/649A/649P/6490A/6490P provides the
following features: 16K/32K/64K bytes of In-System Programmable Flash with Read-While-Write
capabilities, 512/1K/2K bytes EEPROM, 1K/2K/4K byte SRAM, 54/69 general purpose /O lines,
32 general purpose working registers, a JTAG interface for Boundary-scan, On-chip Debugging
support and programming, a complete On-chip LCD controller with internal contrast control,
three flexible Timer/Counters with compare modes, internal and external interrupts, a serial pro-
grammable USART, Universal Serial Interface with Start Condition Detector, an 8-channel, 10-
bit ADC, a programmable Watchdog Timer with internal Oscillator, an SPI serial port, and five
software selectable power saving modes. The Idle mode stops the CPU while allowing the
SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down
mode saves the register contents but freezes the Oscillator, disabling all other chip functions
until the next interrupt or hardware reset. In Power-save mode, the asynchronous timer and the
LCD controller continues to run, allowing the user to maintain a timer base and operate the LCD
display while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU
and all I/0 modules except asynchronous timer, LCD controller and ADC, to minimize switching
noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is running
while the rest of the device is sleeping. This allows very fast start-up combined with low-power
consumption.

Atmel® offers the QTouch® library for embedding capacitive touch buttons, sliders and wheels
functionality into AVR® microcontrollers. The patented charge-transfer signal acquisition offers
robust sensing and includes fully debounced reporting of touch keys and includes Adjacent Key
Suppression® (AKS™) technology for unambiguous detection of key events. The easy-to-use
QTouch Suite toolchain allows you to explore, develop and debug your own touch applications.

The device is manufactured using Atmel’s high density non-volatile memory technology. The
On-chip In-System re-Programmable (ISP) Flash allows the program memory to be repro-
grammed In-System through an SPI serial interface, by a conventional non-volatile memory
programmer, or by an On-chip Boot program running on the AVR core. The Boot program can
use any interface to download the application program in the Application Flash memory. Soft-
ware in the Boot Flash section will continue to run while the Application Flash section is updated,
providing true Read-While-Write operation.

By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip,
the ATmega169A/169PA/329A/329PA/3290A/3290PA/649A/649P/6490A/6490P is a powerful
microcontroller that provides a highly flexible and cost effective solution to many embedded con-
trol applications.

The ATmega169A/169PA/329A/329PA/3290A/3290PA/649A/649P/6490A/6490P AVR is sup-
ported with a full suite of program and system development tools including: C Compilers, Macro
Assemblers, Program Debugger/Simulators, In-Circuit Emulators, and Evaluation kits.

AIMEL 6

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

2.2 Comparison Between
ATmega169A/169PA/329A/329PA/649A/649P/3290A/3290PA/6490A/6490P

Table 2-1. Differences between: ATmega169A/169PA/329A/329PA/649A/649P/3290A/3290PA/6490A/6490P

Device Flash EEPROM RAM LCD Segments
ATmega169A 16Kbyte 512Bytes 1Kbyte 4x25
ATmega169PA 16Kbyte 512Bytes 1Kbyte 4x25
ATmega329A 32Kbyte 1Kbyte 2Kbyte 4x25
ATmega329PA 32Kbyte 1Kbyte 2Kbyte 4x25
ATmega3290A 32Kbytes 1Kbyte 2Kbyte 4 x40
ATmega3290PA 32Kbyte 1Kbyte 2Kbyte 4 x40
ATmega649A 64Kbyte 2Kbyte 4Kbyte 4 x25
ATmega649P 64Kbyte 2Kbyte 4Kbyte 4x25
ATmega6490A 64Kbyte 2Kbyte 4Kbyte 4 x40
ATmega6490P 64Kbyte 2Kbyte 4Kbyte 4 x40

AIMEL 7

8284D-AVR-6/11 L

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

2.3 Pin Descriptions

231 Vg

2.3.2 GND

The following section describes the 1/0-pin special functions.

Digital supply voltage.

Ground.

233 Port A (PA7...PAO)

Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port A output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port A pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port A also serves the functions of various special features of the
ATmega169A/169PA/329A/329PA/3290A/3290PA/649A/649P/6490A/6490P as listed on page
74.

2.34 Port B (PB7..PB0)

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port B output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port B pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port B has better driving capabilities than the other ports.

Port B also serves the functions of various special features of the
ATmega169A/169PA/329A/329PA/3290A/3290PA/649A/649P/6490A/6490P as listed on page
75.

2.3.5 Port C (PC7...PC0)

Port C is an 8-bit bi-directional 1/0 port with internal pull-up resistors (selected for each bit). The
Port C output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port C pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port C also serves the functions of special features of the
ATmega169A/169PA/329A/329PA/3290A/3290PA/649A/649P/6490A/6490P as listed on page
78.

2.3.6 PortD (PD7...PD0)

8284D-AVR-6/11

Port D is an 8-bit bi-directional 1/0 port with internal pull-up resistors (selected for each bit). The
Port D output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port D pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

AIMEL 8

&

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

Port D also serves the functions of various special features of the
ATmega169A/169PA/329A/329PA/3290A/3290PA/649A/649P/6490A/6490P as listed on page
79.

2.3.7 Port E (PE7...PEO)

Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port E output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port E pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port E also serves the functions of various special features of the
ATmega169A/169PA/329A/329PA/3290A/3290PA/649A/649P/6490A/6490P as listed on page
81.

2.3.8 Port F (PF7...PF0)

Port F serves as the analog inputs to the A/D Converter.

Port F also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins
can provide internal pull-up resistors (selected for each bit). The Port F output buffers have sym-
metrical drive characteristics with both high sink and source capability. As inputs, Port F pins
that are externally pulled low will source current if the pull-up resistors are activated. The Port F
pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the
JTAG interface is enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will
be activated even if a reset occurs.

Port F also serves the functions of the JTAG interface.

2.3.9 Port G (PG5...PG0)

Port G is a 6-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port G output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port G pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port G pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port G also serves the functions of various special features of the
ATmega169A/169PA/329A/329PA/3290A/3290PA/649A/649P/6490A/6490P as listed on page
85.

2.3.10 Port H (PH7...PHO0)

Port H is a 8-bit bi-directional 1/0 port with internal pull-up resistors (selected for each bit). The
Port H output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port H pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port H pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port H also serves the functions of various special features of the ATmega3290PA/6490P as
listed on page 87.

2.3.11 Port J (PJ6...PJ0O)

Port J is a 7-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port J output buffers have symmetrical drive characteristics with both high sink and source capa-

AIMEL 9

8284D-AVR-6/11 L

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

2.3.12

2.3.13

2.3.14

2.3.15

2.3.16

2.3.17

RESET

XTALA1

XTAL2

AVCC

AREF

LCDCAP

8284D-AVR-6/11

bility. As inputs, Port J pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port J pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port J also serves the functions of various special features of the ATmega3290PA/6490P as
listed on page 90.

Reset input. A low level on this pin for longer than the minimum pulse length will generate a
reset, even if the clock is not running. The minimum pulse length is given in "System and Reset
Characteristics” on page 353. Shorter pulses are not guaranteed to generate a reset.

Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.
Output from the inverting Oscillator amplifier.

AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally con-
nected to V¢, even if the ADC is not used. If the ADC is used, it should be connected to V¢
through a low-pass filter.

This is the analog reference pin for the A/D Converter.

An external capacitor (typical > 470 nF) must be connected to the LCDCAP pin as shown in Fig-
ure 24-2, if the LCD module is enabled and configured to use internal power. This capacitor acts
as a reservoir for LCD power (V ¢p). A large capacitance reduces ripple on V p but increases
the time until V| p reaches its target value.

AIMEL 10

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

3. Resources

A comprehensive set of development tools, application notes and datasheets are available for
download on http://www.atmel.com/avr.

4. Data Retention

Reliability Qualification results show that the projected data retention failure rate is much less
than 1 PPM over 20 years at 85°C or 100 years at 25°C.

5. About Code Examples

This documentation contains simple code examples that briefly show how to use various parts of
the device. These code examples assume that the part specific header file is included before
compilation. Be aware that not all C compiler vendors include bit definitions in the header files
and interrupt handling in C is compiler dependent. Please confirm with the C compiler documen-
tation for more details.

For 1/0 Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI”
instructions must be replaced with instructions that allow access to extended 1/O. Typically
“LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR".

6. Capacitive touch sensing

8284D-AVR-6/11

The Atmel® QTouch® Library provides a simple to use solution to realize touch sensitive inter-
faces on most Atmel AVR® microcontrollers. The QTouch Library includes support for the
QTouch and QMatrix® acquisition methods.

Touch sensing can be added to any application by linking the appropriate Atmel QTouch Library
for the AVR Microcontroller. This is done by using a simple set of APIs to define the touch chan-
nels and sensors, and then calling the touch sensing API’s to retrieve the channel information
and determine the touch sensor states.

The QTouch Library is FREE and downloadable from the Atmel website at the following location:
www.atmel.com/qtouchlibrary. For implementation details and other information, refer to the
Atmel QTouch Library User Guide - also available for download from the Atmel website.

AIMEL 1

www.atmel.com/qtouchlibrary
http://www.atmel.com/dyn/resources/prod_documents/doc8207.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc8207.pdf

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

7. AVR CPU Core

71 Overview

This section discusses the AVR core architecture in general. The main function of the CPU core
is to ensure correct program execution. The CPU must therefore be able to access memories,
perform calculations, control peripherals, and handle interrupts.

7.2 Architectural Overview

Figure 7-1.

Block Diagram of the AVR Architecture

Data Bus 8-bit

<

A 4

Program Status
Flash na
Program Counter and Control
Memory
Interrupt
A > 32x8 < Unit
Instruction General
Register Purpose h SPI
< Registrers <> Unit
Y
Instruction Watchdog
Decoder \ 4 < Timer
o 2 N
£ 7]
(2] %]
l 3 £ ALU PN Analog
Control Lines 3 2 Comparator
< 3
[5] [0
9] =
= S P
o < <1 1/0 Modulet
Data PN > /O Module 2
> SRAM
<—>»| |/O Module n
EEPROM <
I/O Lines <

v

In order to maximize performance and parallelism, the AVR uses a Harvard architecture — with
separate memories and buses for program and data. Instructions in the program memory are
executed with a single level pipelining. While one instruction is being executed, the next instruc-
tion is pre-fetched from the program memory. This concept enables instructions to be executed

in every clock cycle. The program memory is In-System Reprogrammable Flash memory.

The fast-access Register File contains 32 x 8-bit general purpose working registers with a single
clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typ-

8284D-AVR-6/11

AIMEL

&

12

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

ical ALU operation, two operands are output from the Register File, the operation is executed,
and the result is stored back in the Register File —in one clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data
Space addressing — enabling efficient address calculations. One of the these address pointers
can also be used as an address pointer for look up tables in Flash program memory. These
added function registers are the 16-bit X-, Y-, and Z-register, described later in this section.

The ALU supports arithmetic and logic operations between registers or between a constant and
a register. Single register operations can also be executed in the ALU. After an arithmetic opera-
tion, the Status Register is updated to reflect information about the result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions, able to
directly address the whole address space. Most AVR instructions have a single 16-bit word for-
mat. Every program memory address contains a 16- or 32-bit instruction.

Program Flash memory space is divided in two sections, the Boot Program section and the
Application Program section. Both sections have dedicated Lock bits for write and read/write
protection. The SPM instruction that writes into the Application Flash memory section must
reside in the Boot Program section.

During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the
Stack. The Stack is effectively allocated in the general data SRAM, and consequently the Stack
size is only limited by the total SRAM size and the usage of the SRAM. All user programs must
initialize the SP in the Reset routine (before subroutines or interrupts are executed). The Stack
Pointer (SP) is read/write accessible in the I/O space. The data SRAM can easily be accessed
through the five different addressing modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the 1/O space with an additional Global
Interrupt Enable bit in the Status Register. All interrupts have a separate Interrupt Vector in the
Interrupt Vector table. The interrupts have priority in accordance with their Interrupt Vector posi-
tion. The lower the Interrupt Vector address, the higher the priority.

The I/O memory space contains 64 addresses for CPU peripheral functions as Control Regis-
ters, SPI, and other I/O functions. The I/O Memory can be accessed directly, or as the Data
Space locations following those of the Register File, 0x20 - Ox5F. In addition, the
ATmega169A/169PA/329A/329PA/3290A/3290PA/649A/649P/6490A/6490P has Extended 1/0O
space from 0x60 - OxFF in SRAM where only the ST/STS/STD and LD/LDS/LDD instructions
can be used.

7.3 ALU - Arithmetic Logic Unit

The high-performance AVR ALU operates in direct connection with all the 32 general purpose
working registers. Within a single clock cycle, arithmetic operations between general purpose
registers or between a register and an immediate are executed. The ALU operations are divided
into three main categories — arithmetic, logical, and bit-functions. Some implementations of the
architecture also provide a powerful multiplier supporting both signed/unsigned multiplication
and fractional format. See the “Instruction Set” section for a detailed description.

7.4 AVR Status Register

The Status Register contains information about the result of the most recently executed arithme-
tic instruction. This information can be used for altering program flow in order to perform

AIMEL 13

8284D-AVR-6/11 L

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

conditional operations. Note that the Status Register is updated after all ALU operations, as
specified in the Instruction Set Reference. This will in many cases remove the need for using the
dedicated compare instructions, resulting in faster and more compact code.

The Status Register is not automatically stored when entering an interrupt routine and restored
when returning from an interrupt. This must be handled by software.

7441 SREG - AVR Status Register

The AVR Status Register — SREG — is defined as:

Bit 7 6 5 4 3 2 1 0

0x3F (0x5F) | I | T | H | s | v N z Cc | sREG
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — I: Global Interrupt Enable

The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual inter-
rupt enable control is then performed in separate control registers. If the Global Interrupt Enable
Register is cleared, none of the interrupts are enabled independent of the individual interrupt
enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by
the RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared by
the application with the SEI and CLlI instructions, as described in the instruction set reference.

* Bit 6 — T: Bit Copy Storage

The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or desti-
nation for the operated bit. A bit from a register in the Register File can be copied into T by the
BST instruction, and a bit in T can be copied into a bit in a register in the Register File by the
BLD instruction.

* Bit 5 — H: Half Carry Flag
The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry Is useful
in BCD arithmetic. See the “Instruction Set Description” for detailed information.

e Bit4-S:SignBit, S=N®V
The S-bit is always an exclusive or between the Negative Flag N and the Two’s Complement
Overflow Flag V. See the “Instruction Set Description” for detailed information.

¢ Bit 3 - V: Two’s Complement Overflow Flag
The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See the
“Instruction Set Description” for detailed information.

¢ Bit 2 — N: Negative Flag
The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the
“Instruction Set Description” for detailed information.

e Bit1-2Z: Zero Flag
The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction
Set Description” for detailed information.

AIMEL 4

8284D-AVR-6/11 L

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

* Bit 0 - C: Carry Flag
The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set
Description” for detailed information.

7.5 General Purpose Register File

8284D-AVR-6/11

The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve
the required performance and flexibility, the following input/output schemes are supported by the
Register File:

¢ One 8-bit output operand and one 8-bit result input

¢ Two 8-bit output operands and one 8-bit result input

¢ Two 8-bit output operands and one 16-bit result input

¢ One 16-bit output operand and one 16-bit result input

Figure 7-2 shows the structure of the 32 general purpose working registers in the CPU.

Figure 7-2. AVR CPU General Purpose Working Registers

7 0 Addr.
RO 0x00
R1 0x01
R2 0x02
R13 0x0D
General R14 O0x0E
Purpose R15 O0xOF
Working R16 0x10
Registers R17 0x11
R26 Ox1A X-register Low Byte
R27 0x1B X-register High Byte
R28 0x1C Y-register Low Byte
R29 0x1D Y-register High Byte
R30 Ox1E Z-register Low Byte
R31 Ox1F Z-register High Byte

Most of the instructions operating on the Register File have direct access to all registers, and
most of them are single cycle instructions.

As shown in Figure 7-2, each register is also assigned a data memory address, mapping them
directly into the first 32 locations of the user Data Space. Although not being physically imple-
mented as SRAM locations, this memory organization provides great flexibility in access of the
registers, as the X-, Y- and Z-pointer registers can be set to index any register in the file.

AIMEL 15

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

7.5.1 The X-register, Y-register, and Z-register

The registers R26...R31 have some added functions to their general purpose usage. These reg-
isters are 16-bit address pointers for indirect addressing of the data space. The three indirect
address registers X, Y, and Z are defined as described in Figure 7-3.

Figure 7-3. The X-, Y-, and Z-registers

15 XH XL
X-register |7 o]~ o]
R27 (Ox1B) R26 (Ox1A)
15 YH YL
Y-register I o7 o]
R29 (0x1D) R28 (0x1C)
15 ZH ZL 0
Z-register |7 0 |7 0 |
R31 (Ox1F) R30 (Ox1E)

In the different addressing modes these address registers have functions as fixed displacement,
automatic increment, and automatic decrement (see the instruction set reference for details).

7.6 Stack Pointer

The Stack is mainly used for storing temporary data, for storing local variables and for storing
return addresses after interrupts and subroutine calls. Note that the Stack is implemented as
growing from higher to lower memory locations. The Stack Pointer Register always points to the
top of the Stack. The Stack Pointer points to the data SRAM Stack area where the Subroutine
and Interrupt Stacks are located. A Stack PUSH command will decrease the Stack Pointer.

The Stack in the data SRAM must be defined by the program before any subroutine calls are
executed or interrupts are enabled. Initial Stack Pointer value equals the last address of the
internal SRAM and the Stack Pointer must be set to point above start of the SRAM, see Figure
8-2 on page 21.

See Table 7-1 for Stack Pointer details.

Table 7-1. Stack Pointer instructions
Instruction | Stack pointer Description
PUSH Decremented by 1 | Data is pushed onto the stack
CALL Return address is pushed onto the stack with a subroutine call or
ICALL Decremented by 2 | interrupt
RCALL
POP Incremented by 1 Data is popped from the stack
RET Incremented by 2 Return address is popped from the stack with return from
RETI subroutine or return from interrupt

The AVR Stack Pointer is implemented as two 8-bit registers in the 1/0O space. The number of
bits actually used is implementation dependent. Note that the data space in some implementa-
tions of the AVR architecture is so small that only SPL is needed. In this case, the SPH Register
will not be present.

AIMEL 16

8284D-AVR-6/11 L

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

7.6.1 SPH and SPL - Stack pointer High and Stack Pointer Low

Bit 15 14 13 12 11 10 9 8
Ox3E (0x5E) sP15(" sP140) sP13(sP120 sP110 SP10 SP9 SP8 SPH
0x3D (0x5D) SP7 SP6 SP5 SP4 SP3 SP2 SP1 SPO SPL
7 6 5 4 3 2 1 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
RW RW RW R/W R/W R/W R/W R/W
Initial Value

Note: 1. Reserved bits in ATmega169A/169PA
7.7 Instruction Execution Timing

This section describes the general access timing concepts for instruction execution. The AVR
CPU is driven by the CPU clock clkgpy, directly generated from the selected clock source for the
chip. No internal clock division is used.

Figure 7-4 shows the parallel instruction fetches and instruction executions enabled by the Har-
vard architecture and the fast-access Register File concept. This is the basic pipelining concept
to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost,
functions per clocks, and functions per power-unit.

Figure 7-4. The Parallel Instruction Fetches and Instruction Executions
1 T2 T3 T4

ok —1 A N

CPU
1st Instruction Fetch

1

i

1st Instruction Execute :
2nd Instruction Fetch :

1

1

1

2nd Instruction Execute
3rd Instruction Fetch
3rd Instruction Execute
4th Instruction Fetch X j X j

Figure 7-5 shows the internal timing concept for the Register File. In a single clock cycle an ALU
operation using two register operands is executed, and the result is stored back to the destina-
tion register.

Figure 7-5. Single Cycle ALU Operation

T T2 T3 T4
1 1 1 1
1 1 1 1
1 1 1 1
oepy — : : :
Total Execution Time : : : :
1 1 1 1
Register Operands Fetch i i i :
1 1 1 1
ALU Operation Execute : : : ;
1 1 1 1
Result Write Back ' . > : :
1 L 1 1

AIMEL 17

8284D-AVR-6/11 L

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

7.8 Reset and Interrupt Handling

The AVR provides several different interrupt sources. These interrupts and the separate Reset
Vector each have a separate program vector in the program memory space. All interrupts are
assigned individual enable bits which must be written logic one together with the Global Interrupt
Enable bit in the Status Register in order to enable the interrupt. Depending on the Program
Counter value, interrupts may be automatically disabled when Boot Lock bits BLB02 or BLB12
are programmed. This feature improves software security. See the section "Memory Program-
ming” on page 310 for details.

The lowest addresses in the program memory space are by default defined as the Reset and
Interrupt Vectors. The complete list of vectors is shown in "Interrupts” on page 56. The list also
determines the priority levels of the different interrupts. The lower the address the higher is the
priority level. RESET has the highest priority, and next is INTO — the External Interrupt Request
0. The Interrupt Vectors can be moved to the start of the Boot Flash section by setting the IVSEL
bit in the MCU Control Register (MCUCR). Refer to "Interrupts” on page 56 for more information.
The Reset Vector can also be moved to the start of the Boot Flash section by programming the
BOOTRST Fuse, see "Boot Loader Support — Read-While-Write Self-Programming” on page
294,

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are dis-
abled. The user software can write logic one to the I-bit to enable nested interrupts. All enabled
interrupts can then interrupt the current interrupt routine. The I-bit is automatically set when a
Return from Interrupt instruction — RETI — is executed.

There are basically two types of interrupts. The first type is triggered by an event that sets the
Interrupt Flag. For these interrupts, the Program Counter is vectored to the actual Interrupt Vec-
tor in order to execute the interrupt handling routine, and hardware clears the corresponding
Interrupt Flag. Interrupt Flags can also be cleared by writing a logic one to the flag bit position(s)
to be cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is
cleared, the Interrupt Flag will be set and remembered until the interrupt is enabled, or the flag is
cleared by software. Similarly, if one or more interrupt conditions occur while the Global Interrupt
Enable bit is cleared, the corresponding Interrupt Flag(s) will be set and remembered until the
Global Interrupt Enable bit is set, and will then be executed by order of priority.

The second type of interrupts will trigger as long as the interrupt condition is present. These
interrupts do not necessarily have Interrupt Flags. If the interrupt condition disappears before the
interrupt is enabled, the interrupt will not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and execute one
more instruction before any pending interrupt is served.

Note that the Status Register is not automatically stored when entering an interrupt routine, nor
restored when returning from an interrupt routine. This must be handled by software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled.
No interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the

AIMEL 8

8284D-AVR-6/11 L

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

CLlI instruction. The following example shows how this can be used to avoid interrupts during the
timed EEPROM write sequence.

Assembly Code Example

in rl6, SREG ; Sstore SREG value
cli ; disable interrupts during timed sequence
sbi EECR, EEMWE ; Sstart EEPROM write

sbi EECR, EEWE
out SREG, rlé6 ; restore SREG value (I-bit)

C Code Example

char cSREG;

CcSREG = SREG; /* store SREG value */

/* disable interrupts during timed sequence */
_ _disable_interrupt();

EECR |= (1<<EEMWE); /* start EEPROM write */
EECR |= (1<<EEWE);

SREG = c¢SREG; /* restore SREG value (I-bit) */

When using the SEI instruction to enable interrupts, the instruction following SEI will be exe-
cuted before any pending interrupts, as shown in this example.

Assembly Code Example

sei ,; set Global Interrupt Enable
sleep,; enter sleep, waiting for interrupt
; note: will enter sleep before any pending

; interrupt(s)

C Code Example

_ _enable_interrupt(); /* set Global Interrupt Enable */

__sleep(); /* enter sleep, waiting for Iinterrupt */

/* note: will enter sleep before any pending interrupt(s) */

7.8.1 Interrupt Response Time

The interrupt execution response for all the enabled AVR interrupts is four clock cycles mini-
mum. After four clock cycles the program vector address for the actual interrupt handling routine
is executed. During this four clock cycle period, the Program Counter is pushed onto the Stack.
The vector is normally a jump to the interrupt routine, and this jump takes three clock cycles. If
an interrupt occurs during execution of a multi-cycle instruction, this instruction is completed
before the interrupt is served. If an interrupt occurs when the MCU is in sleep mode, the interrupt
execution response time is increased by four clock cycles. This increase comes in addition to the
start-up time from the selected sleep mode.

A return from an interrupt handling routine takes four clock cycles. During these four clock
cycles, the Program Counter (two bytes) is popped back from the Stack, the Stack Pointer is
incremented by two, and the I-bit in SREG is set.

AIMEL 19

8284D-AVR-6/11 L

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

8. AVR Memories

This section describes the different memories in the
ATmega169A/169PA/329A/329PA/3290A/3290PA/649A/649P/6490A/6490P. The AVR archi-
tecture has two main memory spaces, the Data Memory and the Program Memory space. In
addition, the ATmega169A/169PA/329A/329PA/3290A/3290PA/649A/649P/6490A/6490P fea-
tures an EEPROM Memory for data storage. All three memory spaces are linear.

8.1 In-System Reprogrammable Flash Program Memory

8284D-AVR-6/11

The ATmega169A/169PA/329A/329PA/649A/649P/3290A/3290PA/6490A/6490P contains
16/32/64K bytes On-chip In-System Reprogrammable Flash memory for program storage. Since
all AVR instructions are 16 or 32 bits wide, the Flash is organized as 8K x 16
(ATmega169A/169PA) and 16/32K x 16
(ATmega329A/ATmega329PA/ATmega3290A/ATmega3290PA/ATmega649A/ATmega649P/A
Tmega6490A/ATmega6490P). For software security, the Flash Program memory space is
divided into two sections, Boot Program section and Application Program section.

The Flash memory has an endurance of at least 10,000 write/erase cycles.

The ATmega169A/169PA/329A/329PA/649A/649P/3290A/3290PA/6490A/6490P Program
Counter (PC) is 13/14/15 bits wide, thus addressing the 8/16/32K program memory locations.
The operation of Boot Program section and associated Boot Lock bits for software protection are
described in detail in "Boot Loader Support — Read-While-Write Self-Programming” on page
294. "Memory Programming” on page 310 contains a detailed description on Flash data serial
downloading using the SPI pins or the JTAG interface.

Constant tables can be allocated within the entire program memory address space (see the LPM
— Load Program Memory instruction description).

Timing diagrams for instruction fetch and execution are presented in "Instruction Execution Tim-
ing” on page 17.

Figure 8-1. Program Memory Map

Program Memory

0x0000

Application Flash Section

B ———

Boot Flash Section

0x1FFF/0x3FFF/0x7FFF

AIMEL 20

&

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

8.2 SRAM Data Memory

Figure 8-2 shows how the SRAM Memory is organized.

The ATmega169A/169PA/329A/329PA/649A/649P/3290A/3290PA/6490A/6490P is a complex
microcontroller with more peripheral units than can be supported within the 64 locations
reserved in the Opcode for the IN and OUT instructions. For the Extended I/0O space from 0x60 -
0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

The lower 1280 (ATmegal169A/169PA) and 2304/4352
(ATmega329A/329PA/3290A/3290PA/649A/649P/6490A/6490P) data memory locations
address both the Register File, the I/O memory, Extended 1/O memory, and the internal data
SRAM. The first 32 locations address the Register File, the next 64 location the standard 1/0
memory, then 160 locations of Extended I/O memory, and the next 1024/2048/4096 locations
address the internal data SRAM.

The five different addressing modes for the data memory cover: Direct, Indirect with Displace-
ment, Indirect, Indirect with Pre-decrement, and Indirect with Post-increment. In the Register
File, registers R26 to R31 feature the indirect addressing pointer registers.

The direct addressing reaches the entire data space.

The Indirect with Displacement mode reaches 63 address locations from the base address given
by the Y- or Z-register.

When using register indirect addressing modes with automatic pre-decrement and post-incre-
ment, the address registers X, Y, and Z are decremented or incremented.

The 32 general purpose working registers, 64 1/0 Registers, 160 Extended 1/0 Registers, and
the 1,024/2,048 bytes of internal data SRAM in the
ATmega169A/169PA/329A/329PA/3290A/3290PA/649A/649P/6490A/6490P are all accessible
through all these addressing modes. The Register File is described in "General Purpose Regis-
ter File” on page 15.

Figure 8-2. Data Memory Map

Data Memory

[X 832 Registers | 0x0000 - 0x001F
64 I/O Registers 0x0020 - 0x005F

160 EXUI/O Reg. | 0x0060 - OX00FF
0x0100
Internal SRAM
(1024 X 8)
(2048X8) | 04 F/0x08FF/OX10FF
(4096 x 8) X X X

8.2.1 Data Memory Access Times

8284D-AVR-6/11

This section describes the general access timing concepts for internal memory access. The
internal data SRAM access is performed in two clkgp cycles as described in Figure 8-3.

AIMEL 21

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

Figure 8-3. On-chip Data SRAM Access Cycles
T1 T2 T3

ok — ~— 4 Nt

CPU . . .
Address ! Compute Address , X Address valid |
1 1 1
Data — ~ D =,
1 1 1 'E
1 1 1
WR 1 1/ 1\ =
1 1 1 h—
1 1 / 4 —_
Data ; —(L
1 1 1 S
1 1 1
o
RD ! 1/ n\
1 1 1 -
Memory Access Instruction Next Instruction

8.3 EEPROM Data Memory

The ATmega169A/169PA/329A/329PA/3290A/3290PA/649A/649P/6490A/6490P contains
512/1K/2K bytes of data EEPROM memory. It is organized as a separate data space, in which
single bytes can be read and written. The EEPROM has an endurance of at least 100,000
write/erase cycles. The access between the EEPROM and the CPU is described in the follow-
ing, specifying the EEPROM Address Registers, the EEPROM Data Register, and the EEPROM
Control Register.

For a detailed description of SPI, JTAG and Parallel data downloading to the EEPROM, see
Table 28-9 on page 315, "Programming via the JTAG Interface” on page 331, and "Parallel Pro-
gramming Parameters, Pin Mapping, and Commands” on page 314 respectively.

8.3.1 EEPROM Read/Write Access

The EEPROM Access Registers are accessible in the 1/0 space.

The write access time for the EEPROM is given in Table 8-1 on page 23. A self-timing function,
however, lets the user software detect when the next byte can be written. If the user code con-
tains instructions that write the EEPROM, some precautions must be taken. In heavily filtered
power supplies, V is likely to rise or fall slowly on power-up/down. This causes the device for
some period of time to run at a voltage lower than specified as minimum for the clock frequency
used. See "Preventing EEPROM Corruption” on page 25 for details on how to avoid problems in
these situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be followed.

When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is
executed. When the EEPROM is written, the CPU is halted for two clock cycles before the next
instruction is executed.

The following procedure should be followed when writing the EEPROM (the order of steps 3 and
4 is not essential). See "Register Description” on page 27 for supplementary description for each
register bit.

AIMEL 22

8284D-AVR-6/11 ——— ——— —]

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

8284D-AVR-6/11

Wait until EEWE becomes zero.

Wait until SPMEN in SPMCSR becomes zero.

Write new EEPROM address to EEAR (optional).

Write new EEPROM data to EEDR (optional).

Write a logical one to the EEMWE bit while writing a zero to EEWE in EECR.
Within four clock cycles after setting EEMWE, write a logical one to EEWE.

ook wh =

The EEPROM can not be programmed during a CPU write to the Flash memory. The software
must check that the Flash programming is completed before initiating a new EEPROM write.
Step 2 is only relevant if the software contains a Boot Loader allowing the CPU to program the
Flash. If the Flash is never being updated by the CPU, step 2 can be omitted. See "Boot Loader
Support — Read-While-Write Self-Programming” on page 294 for details about Boot
programming.

Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the
EEPROM Master Write Enable will time-out. If an interrupt routine accessing the EEPROM is
interrupting another EEPROM access, the EEAR or EEDR Register will be modified, causing the
interrupted EEPROM access to fail. It is recommended to have the Global Interrupt Flag cleared
during all the steps to avoid these problems.

When the write access time has elapsed, the EEWE bit is cleared by hardware. The user soft-
ware can poll this bit and wait for a zero before writing the next byte. When EEWE has been set,
the CPU is halted for two cycles before the next instruction is executed.

The user should poll the EEWE bit before starting the read operation. If a write operation is in
progress, it is neither possible to read the EEPROM, nor to change the EEAR Register.

The calibrated Oscillator is used to time the EEPROM accesses. Table 8-1 lists the typical pro-
gramming time for EEPROM access from the CPU.
Table 8-1. EEPROM Programming Time

Number of Calibrated
Symbol RC Oscillator Cycles Typical Programming Time

EEPROM write (from CPU) 27 072 3.3ms

The following code examples show one assembly and one C function for writing to the
EEPROM. To avoid that interrupts will occur during execution of these functions, the examples
assume that interrupts are controlled (e.g. by disabling interrupts globally). The examples also
assume that no Flash Boot Loader is present in the software. If such code is present, the
EEPROM write function must also wait for any ongoing SPM command to finish.

AIMEL 23

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

8284D-AVR-6/11

Assembly Code Example

EEPROM_write:
; Wait for completion of previous write

sbic EECR, EEWE

rjmp EEPROM_write

; Set up address (rl8:rl17) in address register

out EEARH, rl8

out EEARL, rl7

; Write data (rl6) to Data Register

out EEDR,rl6

; Write logical one to EEMWE

sbi EECR, EEMWE

; Start eeprom write by setting EEWE

sbi EECR, EEWE

ret

C Code Example

void EEPROM _write (unsigned int uiAddress, unsigned char ucData)
{
/* Wait for completion of previous write */
while (EECR & (1<<EEWE))
/* Set up address and Data Registers */
EEAR = uiAddress;
EEDR = ucData;
/* Write logical one to EEMWE */
EECR |= (1<<EEMWE) ;
/* Start eeprom write by setting EEWE */
EECR |= (1<<EEWE);
}

The next code examples show assembly and C functions for reading the EEPROM. The exam-
ples assume that interrupts are controlled so that no interrupts will occur during execution of

these functions.

AIMEL

24

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

Assembly Code Example

EEPROM_read:
; Wait for completion of previous write
sbic EECR, EEWE
rjmp EEPROM_read
; Set up address (rl18:r17) in address register
out EEARH, rl8
out EEARL, rl7
; Start eeprom read by writing EERE
sbi EECR, EERE
; Read data from Data Register
in rl6,EEDR

ret

C Code Example

unsigned char EEPROM_read (unsigned int uiAddress)
{

/* Wait for completion of previous write */

while (EECR & (1<<EEWE))

/* Set up address register */

EEAR = uiAddress;

/* Start eeprom read by writing EERE */

EECR |= (1<<EERE);

/* Return data from Data Register */

return EEDR;

8.3.2 EEPROM Write During Power-down Sleep Mode

When entering Power-down sleep mode while an EEPROM write operation is active, the
EEPROM write operation will continue, and will complete before the Write Access time has
passed. However, when the write operation is completed, the clock continues running, and as a
consequence, the device does not enter Power-down entirely. It is therefore recommended to
verify that the EEPROM write operation is completed before entering Power-down.

8.3.3 Preventing EEPROM Corruption

During periods of low V¢ the EEPROM data can be corrupted because the supply voltage is
too low for the CPU and the EEPROM to operate properly. These issues are the same as for
board level systems using EEPROM, and the same design solutions should be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too low. First,
a regular write sequence to the EEPROM requires a minimum voltage to operate correctly. Sec-
ondly, the CPU itself can execute instructions incorrectly, if the supply voltage is too low.

EEPROM data corruption can easily be avoided by following this design recommendation:

AIMEL 25

8284D-AVR-6/11 L

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

8.4 1/0 Memory

Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This can
be done by enabling the internal Brown-out Detector (BOD). If the detection level of the internal
BOD does not match the needed detection level, an external low Vo reset Protection circuit can
be used. If a reset occurs while a write operation is in progress, the write operation will be com-
pleted provided that the power supply voltage is sufficient.

The I/O space definition of the
ATmegal169A/169PA/329A/329PA/3290A/3290PA/649A/649P/6490A/6490P is shown in "Reg-
ister Summary” on page 679.

All ATmega169A/169PA/329A/329PA/3290A/3290PA/649A/649P/6490A/6490P 1/0Os and
peripherals are placed in the 1/0 space. All I/0O locations may be accessed by the LD/LDS/LDD
and ST/STS/STD instructions, transferring data between the 32 general purpose working regis-
ters and the 1/0O space. I/0 Registers within the address range 0x00 - Ox1F are directly bit-
accessible using the SBI and CBI instructions. In these registers, the value of single bits can be
checked by using the SBIS and SBIC instructions. Refer to the instruction set section for more
details. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - Ox3F
must be used. When addressing I/0O Registers as data space using LD and ST instructions,
0x20 must be added to these addresses.

The ATmega169A/169PA/329A/329PA/3290A/3290PA/649A/649P/6490A/6490P is a complex
microcontroller with more peripheral units than can be supported within the 64 location reserved
in Opcode for the IN and OUT instructions. For the Extended 1/0O space from 0x60 - OxFF in
SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

For compatibility with future devices, reserved bits should be written to zero if accessed.
Reserved I/O memory addresses should never be written.

Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most
other AVRs, the CBI and SBI instructions will only operate on the specified bit, and can therefore
be used on registers containing such Status Flags. The CBI and SBI instructions work with reg-
isters 0x00 to Ox1F only.

The I/O and peripherals control registers are explained in later sections.

8.5 General Purpose I/O Registers

8284D-AVR-6/11

The ATmega169A/169PA/329A/329PA/3290A/3290PA/649A/649P/6490A/6490P contains
three General Purpose I/0 Registers. These registers can be used for storing any information,
and they are particularly useful for storing global variables and Status Flags. General Purpose
I/0 Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI,
CBI, SBIS, and SBIC instructions.

AIMEL 26

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

8.6 Register Description

8.6.1 EEARH and EEARL - EEPROM Address Register ATmega169A/169PA

Bit 15 14 13 12 11 10 9 8
0x22 (0x42) = = = = = = = EEARS | EEARH
0x21 (0x41) EEAR7 | EEAR6 | EEARS5 EEAR4 EEAR3 EEAR2 EEAR1 EEARO EEARL
7 6 5 4 3 2 1 0
Read/Write R R R R R R R RW
RW RW R/W R/W R/W RW RW RW
Initial Value 0 0 0 0 0 0 0 X
X X X X X X X

* Bits 15:9 — Reserved
These bits are reserved and will always be read as zero.

e Bits 8:0 - EEAR8:0: EEPROM Address

The EEPROM Address Registers — EEARH and EEARL specify the EEPROM address in the
512 bytes EEPROM space. The EEPROM data bytes are addressed linearly between 0 and
511. The initial value of EEAR is undefined. A proper value must be written before the EEPROM
may be accessed.

8.6.2 EEARH and EEARL - EEPROM Address Register
ATmega329A/329PA/3290A/3290PA/649A/649P/6490A/6490P

Bit 15 14 13 12 11 10 9 8
0x22 (0x42) - - - - - EEAR10(" EEAR9 EEARS8 EEARH
0x21 (0x41) EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEARO EEARL
7 6 5 4 3 2 1 0
Read/Write R R R R R R/W R/W R/W
R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 X X X
X X X

¢ Bits 15:11 — Reserved
These bits are reserved bits in the
ATmega329A/329PA/3290A/3290PA/649A/649P/6490A/6490P and will always read as zero.

e Bits 10:0 - EEAR10:0: EEPROM Address

The EEPROM Address Registers — EEARH and EEARL specify the EEPROM address in the
1/2K bytes EEPROM space. The EEPROM data bytes are addressed linearly between 0 and
1023/2047. The initial value of EEAR is undefined. A proper value must be written before the
EEPROM may be accessed.

Note: 1. EEAR10 is only valid for ATmega649A/649P/6490A/6490P.

AIMEL 27

8284D-AVR-6/11 L

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

8.6.3 EEDR - EEPROM Data Register

Bit 7 6 5 4 3 2 1 0

0x20 (0x40) | MSB | LsB | EEDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

* Bits 7:0 — EEDR7:0: EEPROM Data

For the EEPROM write operation, the EEDR Register contains the data to be written to the
EEPROM in the address given by the EEAR Register. For the EEPROM read operation, the
EEDR contains the data read out from the EEPROM at the address given by EEAR.

8.6.4 EECR - EEPROM Control Register

Bit 7 6 5 4 3 2 1 0

0x1F (OX3F) | | - - EERIE EEMWE EEWE EERE | EECR
Read/Write R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 X 0

¢ Bits 7:4 — Res: Reserved Bits
These bits are reserved bits and will always read as zero.

* Bit 3 - EERIE: EEPROM Ready Interrupt Enable

Writing EERIE to one enables the EEPROM Ready Interrupt if the | bit in SREG is set. Writing
EERIE to zero disables the interrupt. The EEPROM Ready interrupt generates a constant inter-
rupt when EEWE is cleared.

e Bit 2 - EEMWE: EEPROM Master Write Enable

The EEMWE bit determines whether setting EEWE to one causes the EEPROM to be written.
When EEMWE is set, setting EEWE within four clock cycles will write data to the EEPROM at
the selected address If EEMWE is zero, setting EEWE will have no effect. When EEMWE has
been written to one by software, hardware clears the bit to zero after four clock cycles. See the
description of the EEWE bit for an EEPROM write procedure.

* Bit 1 - EEWE: EEPROM Write Enable

The EEPROM Write Enable Signal EEWE is the write strobe to the EEPROM. When address
and data are correctly set up, the EEWE bit must be written to one to write the value into the
EEPROM. The EEMWE bit must be written to one before a logical one is written to EEWE, oth

* Bit 0 — EERE: EEPROM Read Enable

The EEPROM Read Enable Signal EERE is the read strobe to the EEPROM. When the correct
address is set up in the EEAR Register, the EERE bit must be written to a logic one to trigger the
EEPROM read. The EEPROM read access takes one instruction, and the requested data is
available immediately. When the EEPROM is read, the CPU is halted for four cycles before the
next instruction is executed.

8.6.5 GPIOR2 - General Purpose I/0 Register 2

Bit 7 6 5 4 3 2 1 0

0x2B (0x4B) | MSB | | LSB | GPIOR2
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

AIMEL 28

8284D-AVR-6/11 L

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

8.6.6 GPIOR1 - General Purpose I/0O Register 1

Bit 7 6 5 4 3 2 1 0

0x2A (0x4A) | MSB | | LsB | aPIoR1
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

8.6.7 GPIORO - General Purpose I/0O Register 0

Bit 7 6 5 4 3 2 1 0

Ox1E (0x3E) | MSB | | LsB | aPioRro
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

AIMEL %

8284D-AVR-6/11

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

9. System Clock and Clock Options

9.1 Clock Systems and their Distribution

Figure 9-1 presents the principal clock systems in the AVR and their distribution. All of the clocks
need not be active at a given time. In order to reduce power consumption, the clocks to modules
not being used can be halted by using different sleep modes, as described in "Power Manage-
ment and Sleep Modes” on page 40. The clock systems are detailed below.

Figure 9-1. Clock Distribution

Asynchronous General /0 Flash and
LCD Controller Timer/Counter Modules CPU Core RAM EEPROM
A 3 J A A A A A A
clkyo AVR Clock clkgpy
Control Unit
clk,gy ClKe pg
J J
Reset Logic Watchdog Timer
I A
Source clock Watchdog clock
Clock Watchdog
Multiplexer Oscillator
A A A

Timer/Counter External Clock Crystal Low-frequency Calibrated RC
Oscillator erna c Oscillator Crystal Oscillator Oscillator

911 CPU Clock - clKcpy

The CPU clock is routed to parts of the system concerned with operation of the AVR core.
Examples of such modules are the General Purpose Register File, the Status Register and the
data memory holding the Stack Pointer. Halting the CPU clock inhibits the core from performing
general operations and calculations.

9.1.2 1/O Clock - clkyq

The 1/O clock is used by the majority of the 1/0O modules, like Timer/Counters, SPI, and USART.
The I/O clock is also used by the External Interrupt module, but note that some external inter-
rupts are detected by asynchronous logic, allowing such interrupts to be detected even if the I/O
clock is halted. Also note that start condition detection in the USI module is carried out asynchro-
nously when clkq is halted, enabling USI start condition detection in all sleep modes.

9.1.3 Flash Clock — clkg ash

8284D-AVR-6/11

The Flash clock controls operation of the Flash interface. The Flash clock is usually active simul-
taneously with the CPU clock.

AIMEL 30

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

9.1.4

9.1.5

9.2

9.3

8284D-AVR-6/11

Asynchronous Timer Clock - clk,gy

The Asynchronous Timer clock allows the Asynchronous Timer/Counter and the LCD controller
to be clocked directly from an external clock or an external 32kHz clock crystal. The dedicated
clock domain allows using this Timer/Counter as a real-time counter even when the device is in
sleep mode. It also allows the LCD controller output to continue while the rest of the device is in
sleep mode.

ADC Clock - clkpc

The ADC is provided with a dedicated clock domain. This allows halting the CPU and I/O clocks
in order to reduce noise generated by digital circuitry. This gives more accurate ADC conversion
results.

Clock Sources

The device has the following clock source options, selectable by Flash Fuse bits as shown
below. The clock from the selected source is input to the AVR clock generator, and routed to the
appropriate modules.

Table 9-1. Device Clocking Options Select("

Device Clocking Option CKSEL3..0
External Crystal/Ceramic Resonator 1111 - 1000
External Low-frequency Crystal 0111 -0110
Calibrated Internal RC Oscillator 0010

External Clock 0000
Reserved 0011, 0001, 0101, 0100

Note: 1. For all fuses “1” means unprogrammed while “0” means programmed.

The various choices for each clocking option is given in the following sections. When the CPU
wakes up from Power-down or Power-save, the selected clock source is used to time the start-
up, ensuring stable Oscillator operation before instruction execution starts. When the CPU starts
from reset, there is an additional delay allowing the power to reach a stable level before com-
mencing normal operation. The Watchdog Oscillator is used for timing this real-time part of the
start-up time. The number of WDT Oscillator cycles used for each time-out is shown in Table 9-
2. The frequency of the Watchdog Oscillator is voltage dependent as shown in "Typical Charac-
teristics” on page 359.

Table 9-2. Number of Watchdog Oscillator Cycles

Typ Time-out (V¢ = 5.0V) Typ Time-out (V¢ = 3.0V) Number of Cycles
4.1ms 4.3ms 4K (4,096)
65ms 69ms 64K (65,536)

Default Clock Source

The device is shipped with CKSEL = “0010”, SUT = “10”, and CKDIV8 programmed. The default
clock source setting is the Internal RC Oscillator with longest start-up time and an initial system
clock prescaling of 8. This default setting ensures that all users can make their desired clock
source setting using an In-System or Parallel programmer.

AIMEL 3

&

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

9.4 Calibrated Internal RC Oscillator

By default, the Internal RC Oscillator provides an approximate 8MHz clock. Though voltage and
temperature dependent, this clock can be very accurately calibrated by the user. The device is
shipped with the CKDIV8 Fuse programmed. See "System Clock Prescaler” on page 37 for
more details.

This clock may be selected as the system clock by programming the CKSEL Fuses as shown in
Table 9-3. If selected, it will operate with no external components. During reset, hardware loads
the pre-programmed calibration value into the OSCCAL Register and thereby automatically cali-
brates the RC Oscillator. The accuracy of this calibration is shown as Factory calibration in Table
29-12 on page 352.

By changing the OSCCAL register from SW, see "OSCCAL — Oscillator Calibration Register” on
page 38, it is possible to get a higher calibration accuracy than by using the factory calibration.
The accuracy of this calibration is shown as User calibration in Table 29-12 on page 352.

When this Oscillator is used as the chip clock, the Watchdog Oscillator will still be used for the
Watchdog Timer and for the Reset Time-out. For more information on the pre-programmed cali-
bration value, see the section "Calibration Byte” on page 3183.

Table 9-3. Internal Calibrated RC Oscillator Operating Modes"®
Frequency Range® (MHz) CKSEL3...0
7.3-8.1 0010

Notes: 1. The device is shipped with this option selected.
2. The frequency ranges are preliminary values.
3. If 8MHz frequency exceeds the specification of the device (depends on V), the CKDIV8
Fuse can be programmed in order to divide the internal frequency by 8.

When this Oscillator is selected, start-up times are determined by the SUT Fuses as shown in

Table 9-4.
Table 9-4. Start-up times for the internal calibrated RC Oscillator clock selection
Start-up Time from Power- Additional Delay from
Power Conditions down and Power-save Reset (V¢ = 5.0V) SUT1...0
BOD enabled 6 CK 14CK 00
Fast rising power 6 CK 14CK + 4.1ms 01
Slowly rising power 6 CK 14CK + 65ms(! 10
Reserved 11

Note: 1. The device is shipped with this option selected.

9.5 Crystal Oscillator

XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can be con-
figured for use as an On-chip Oscillator, as shown in Figure 9-2. Either a quartz crystal or a
ceramic resonator may be used.

C1 and C2 should always be equal for both crystals and resonators. The optimal value of the
capacitors depends on the crystal or resonator in use, the amount of stray capacitance, and the

AIMEL 32

8284D-AVR-6/11 L

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

8284D-AVR-6/11

electromagnetic noise of the environment. Some initial guidelines for choosing capacitors for
use with crystals are given in Table 9-5. For ceramic resonators, the capacitor values given by
the manufacturer should be used.

Figure 9-2. Crystal Oscillator Connections

c2

——F——— XTAL2
o1 7
5 d 1 xTALd

GND

The Oscillator can operate in three different modes, each optimized for a specific frequency
range. The operating mode is selected by the fuses CKSEL3...1 as shown in Table 9-5.

Table 9-5. Crystal Oscillator Operating Modes

Frequency Range Recommended Range for Capacitors C1 and
CKSELS3..1 (MHz) C2 for Use with Crystals (pF)
100 0.4-0.9 -
101 09-3.0 12-22
110 3.0-8.0 12-22
111 8.0 - 12-22

Note: 1. This option should not be used with crystals, only with ceramic resonators.
The CKSELO Fuse together with the SUT1...0 Fuses select the start-up times as shown in Table
9-6.

Table 9-6. Start-up Times for the Crystal Oscillator Clock Selection

Start-up Time from Additional Delay
Power-down and from Reset
CKSELO | SUT1..0 Power-save (Vg = 5.0V) Recommended Usage
0 00 258 CK™M 14CK + 4.1ms Ceramic resonator, fast
rising power
0 01 258 CK(") 14CK + 65ms Ceramic resonator,
slowly rising power
Ceramic resonator,
@))
0 10 1K CK 14CK BOD enabled
0 11 1K CK® 14CK + 4.1ms Ceramic resonator, fast
rising power
1 00 1K CK®@ 14CK + 65ms Ceramic resonator,
slowly rising power

AIMEL 33

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

Table 9-6. Start-up Times for the Crystal Oscillator Clock Selection (Continued)
Start-up Time from Additional Delay
Power-down and from Reset
CKSELO | SUT1..0 Power-save (Vg = 5.0V) Recommended Usage

1 01 16K CK 14CK Crystal Oscillator, BOD
enabled

1 10 16K CK 14CK + 4.1ms Crystal Oscillator, fast
rising power

1 11 16K CK 14CK + 65ms Crystal Oscillator,
slowly rising power

Notes: 1. These options should only be used when not operating close to the maximum frequency of the
device, and only if frequency stability at start-up is not important for the application. These

options are not suitable for crystals.

2. These options are intended for use with ceramic resonators and will ensure frequency stability
at start-up. They can also be used with crystals when not operating close to the maximum fre-
quency of the device, and if frequency stability at start-up is not important for the application.

Low-frequency Crystal Oscillator

The Low-frequency Crystal Oscillator is optimized for use with a 32.768kHz watch crystal. When
selecting crystals, load capacitance and crystal’'s Equivalent Series Resistance, ESR must be
taken into consideration. Both values are specified by the crystal vendor.

ATmega329A/329PA oscillator is optimized for very low power consumption, and thus when
selecting crystals, see Table 9-7 for maximum ESR recommendations on 9pF and 6.5pF
crystals

Table 9-7. Maximum ESR Recommendation for 32.768kHz Watch Crystal
ATmega169A/169PA
Crystal CL (pF) Max ESR [kQ]"
6.5 60
9 35

Note: 1. Maximum ESR is typical value based on characterization

The Low-frequency Crystal Oscillator provides an internal load capacitance, see Table 9-9 on
page 35 at each TOSC pin.

ATmega169A/169PA/329A/329PA/649A/649P/3290A/3290PA/6490A/6490P oscillator is opti-
mized for very low power consumption, and thus when selecting crystals, see Table 9-8 on page

8284D-AVR-6/11

34 for maximum ESR recommendations on 6.5pF, 9.0pF and 12.5pF crystals.

Table 9-8. Maximum ESR Recommendation for 32.768kHz Watch Crystal
ATmega329A/329PA/3290A/3290PA/649A/649P/6490A/6490P
Crystal CL (pF) Max ESR [kQ]™
6.5 75
9.0 65
12.5 30

Note: 1. Maximum ESR is typical value based on characterization

AIMEL

&

34

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

The Low-frequency Crystal Oscillator provides an internal load capacitance, seeTable 9-9 at
each TOSC pin.

Table 9-9. Capacitance for Low-frequency Oscillator.
Device 32kHz Osc. Type | Cap(Xtal1/Tosc1) | Cap(Xtal2/Tosc2)
ATmega169A/169PA/329A/329PA/3290A System Osc. 16pF 6pF
/3290PA/649A/649P/6490A/6490P .
Timer Osc. 16pF 6pF

The capacitance (Ce + Ci) needed at each TOSC pin can be calculated by using:

where

Ce+Ci=2-CL-C,

Ce - is optional external capacitors as described in Figure 9-2 on page 33

Ci-isthep

in capacitance in Table 9-10

CL - is the load capacitance for a 32.768kHz crystal specified by the crystal vendor.
Cg - is the total stray capacitance for one TOSC pin.

Crystals specifying load capacitance (CL) higher than the ones given in the Table 9-9, require
external capacitors applied as described in Figure 9-2 on page 33.

To find suitable load capacitance for a 32.768kHz crystal, please consult the crystal datasheet.

The Low-frequency Crystal Oscillator must be selected by setting the CKSEL Fuses to “0110” or
“0111” as shown in Table 9-11 on page 35. Start-up times are determined by the SUT Fuses as
shown in Table 9-10.

Table 9-10. Start-up Times for the Low-frequency Crystal Oscillator Clock Selection
SUT1..0 Additional Delay from Reset (Voc = 5.0V) | Recommended Usage
00 4 CK Fast rising power or BOD enabled
01 4 CK+4.1ms Slowly rising power
10 4 CK + 65ms Stable frequency at start-up
11 Reserved
Table 9-11. Start-up Times for the Low-frequency Crystal Oscillator Clock Selection
CKSELS... Start-up Time from
0 Power-down and Power-save Recommended Usage
0110 1K CK
0111 32K CK Stable frequency at start-up
Note: 1. This option should only be used if frequency stability at start-up is not important for the

9.7 External Clock

application

To drive the device from an external clock source, XTAL1 should be driven as shown in Figure
9-3. To run the device on an external clock, the CKSEL Fuses must be programmed to “0000”.

8284D-AVR-6/11

AIMEL

35

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

9.8

8284D-AVR-6/11

Figure 9-3. External Clock Drive Configuration

NC ——— XTAL2
EXTERNAL
CLOCK ————{ XTAL1
SIGNAL
GND

—

When this clock source is selected, start-up times are determined by the SUT Fuses as shown in
Table 9-13.

Table 9-12. Crystal Oscillator Clock Frequency

CKSEL3:0 Frequency Range
ATmega169A/169PA/649A/649P 0000 0- 16MHz
ATmega329A/329PA/3290A/3290PA/6490A/6490P | 0000 0 - 20MHz

Table 9-13. Start-up Times for the External Clock Selection

Start-up Time from Power- Additional Delay from
SUT1..0 down and Power-save Reset (V¢ = 5.0V) Recommended Usage
00 6 CK 14CK BOD enabled
01 6 CK 14CK + 4.1ms Fast rising power
10 6 CK 14CK + 65ms Slowly rising power
11 Reserved

When applying an external clock, it is required to avoid sudden changes in the applied clock fre-
quency to ensure stable operation of the MCU. A variation in frequency of more than 2% from
one clock cycle to the next can lead to unpredictable behavior. It is required to ensure that the
MCU is kept in Reset during such changes in the clock frequency.

Note that the System Clock Prescaler can be used to implement run-time changes of the internal
clock frequency while still ensuring stable operation. Refer to "System Clock Prescaler’ on page
37 for details.

Clock Output Buffer

When the CKOUT Fuse is programmed, the system Clock will be output on CLKO. This mode is
suitable when the chip clock is used to drive other circuits on the system. The clock will be out-
put also during reset and the normal operation of I/O pin will be overridden when the fuse is
programmed. Any clock source, including internal RC Oscillator, can be selected when CLKO
serves as clock output. If the System Clock Prescaler is used, it is the divided system clock that
is output when the CKOUT Fuse is programmed.

AIMEL 3

&

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

9.9 Timer/Counter Oscillator

ATmega169A/169PA/329A/329PA/3290A/3290PA/649A/649P/6490A/6490P uses the same
crystal oscillator for Low-frequency Oscillator and Timer/Counter Oscillator. See "Low-frequency
Crystal Oscillator” on page 34 for details on the oscillator and crystal requirements.

ATmega169A/169PA/329A/329PA/3290A/3290PA/649A/649P/6490A/6490P share the
Timer/Counter Oscillator Pins (TOSC1 and TOSC2) with XTAL1 and XTAL2. When using the
Timer/Counter Oscillator, the system clock needs to be four times the oscillator frequency. Due
to this and the pin sharing, the Timer/Counter Oscillator can only be used when the Calibrated
Internal RC Oscillator is selected as system clock source.

Applying an external clock source to TOSC1 can be done if EXTCLK in the ASSR Register is
written to logic one. See "Asynchronous Operation of Timer/Counter2” on page 158 for further
description on selecting external clock as input instead of a 32.768kHz watch crystal.

9.10 System Clock Prescaler

The ATmega169A/169PA/329A/329PA/3290A/3290PA/649A/649P/6490A/6490P system clock
can be divided by setting the Clock Prescale Register — CLKPR. This feature can be used to
decrease power consumption when the requirement for processing power is low. This can be
used with all clock source options, and it will affect the clock frequency of the CPU and all syn-
chronous peripherals. clk;q, clkapc, Clkgpy, and clkg agy are divided by a factor as shown in
Table 9-14 on page 39.

9.10.1 Switching Time

8284D-AVR-6/11

When switching between prescaler settings, the System Clock Prescaler ensures that no
glitches occur in the clock system and that no intermediate frequency is higher than neither the
clock frequency corresponding to the previous setting, nor the clock frequency corresponding to
the new setting.

The ripple counter that implements the prescaler runs at the frequency of the undivided clock,
which may be faster than the CPU’s clock frequency. Hence, it is not possible to determine the
state of the prescaler — even if it were readable, and the exact time it takes to switch from one
clock division to another cannot be exactly predicted.

From the time the CLKPS values are written, it takes between T1 + T2 and T1 + 2*T2 before the
new clock frequency is active. In this interval, 2 active clock edges are produced. Here, T1 is the
previous clock period, and T2 is the period corresponding to the new prescaler setting.

AIMEL 37

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

9.11 Register Description

9.11.1 OSCCAL - Oscillator Calibration Register

Bit 7 6 5 4 3 2 1 0

(0x66) | caLz | cAs | cALs CAL4 CAL3 CAL2 CAL1 CALO | OSCCAL
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value Device Specific Calibration Value

* Bits 7:0 — CAL7:0: Oscillator Calibration Value

The Oscillator Calibration Register is used to trim the Calibrated Internal RC Oscillator to
remove process variations from the oscillator frequency. A pre-programmed calibration value is
automatically written to this register during chip reset, giving the Factory calibrated frequency as
specified in Table 29-12 on page 352. The application software can write this register to change
the oscillator frequency. The oscillator can be calibrated to frequencies as specified in Table 29-
12 on page 352. Calibration outside that range is not guaranteed.

Note that this oscillator is used to time EEPROM and Flash write accesses, and these write
times will be affected accordingly. If the EEPROM or Flash are written, do not calibrate to more
than 8.8MHz. Otherwise, the EEPROM or Flash write may fail.

The CAL?7 bit determines the range of operation for the oscillator. Setting this bit to 0 gives the
lowest frequency range, setting this bit to 1 gives the highest frequency range. The two fre-
quency ranges are overlapping, in other words a setting of OSCCAL = 0x7F gives a higher
frequency than OSCCAL = 0x80.

The CALS...0 bits are used to tune the frequency within the selected range. A setting of 0x00
gives the lowest frequency in that range, and a setting of Ox7F gives the highest frequency in the
range.

9.11.2 CLKPR - Clock Prescale Register

Bit 7 6 5 4 3 2 1 0

(0x61) | CLKPCE | = = CLKPS3 | CLKPS2 | CLKPS1 CLKPSO | CLKPR
Read/Write RW R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 See Bit Description

e Bit 7 - CLKPCE: Clock Prescaler Change Enable

The CLKPCE bit must be written to logic one to enable change of the CLKPS bits. The CLKPCE
bit is only updated when the other bits in CLKPR are simultaneously written to zero. CLKPCE is
cleared by hardware four cycles after it is written or when CLKPS bits are written. Rewriting the
CLKPCE bit within this time-out period does neither extend the time-out period, nor clear the
CLKPCE bit.

* Bits 3:0 — CLKPS3:0: Clock Prescaler Select Bits 3:0

These bits define the division factor between the selected clock source and the internal system
clock. These bits can be written run-time to vary the clock frequency to suit the application
requirements. As the divider divides the master clock input to the MCU, the speed of all synchro-
nous peripherals is reduced when a division factor is used. The division factors are given in
Table 9-14 on page 39.

To avoid unintentional changes of clock frequency, a special write procedure must be followed
to change the CLKPS bits:

AIMEL 38

8284D-AVR-6/11 L

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

1. Write the Clock Prescaler Change Enable (CLKPCE) bit to one and all other bits in
CLKPR to zero.

2. Within four cycles, write the desired value to CLKPS while writing a zero to CLKPCE.

Interrupts must be disabled when changing prescaler setting to make sure the write procedure is
not interrupted.

The CKDIV8 Fuse determines the initial value of the CLKPS bits. If CKDIV8 is unprogrammed,
the CLKPS bits will be reset to “0000”. If CKDIV8 is programmed, CLKPS bits are reset to
“0011”, giving a division factor of 8 at start up. This feature should be used if the selected clock
source has a higher frequency than the maximum frequency of the device at the present operat-
ing conditions. Note that any value can be written to the CLKPS bits regardless of the CKDIV8
Fuse setting. The Application software must ensure that a sufficient division factor is chosen if
the selected clock source has a higher frequency than the maximum frequency of the device at

the present operating conditions. The device is shipped with the CKDIV8 Fuse programmed.

Table 9-14. Clock Prescaler Select
CLKPS3 CLKPS2 CLKPS1 CLKPSO Clock Division Factor

0 0 0 0 1

0 0 0 1 2

0 0 1 0 4

0 0 1 1 8

0 1 0 0 16

0 1 0 1 32

0 1 1 0 64

0 1 1 1 128

1 0 0 0 256

1 0 0 1 Reserved
1 0 1 0 Reserved
1 0 1 1 Reserved
1 1 0 0 Reserved
1 1 0 1 Reserved
1 1 1 0 Reserved
1 1 1 1 Reserved

8284D-AVR-6/11

AIMEL

39

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

10. Power Management and Sleep Modes

10.1 Overview

10.2 Sleep Modes

Sleep modes enable the application to shut down unused modules in the MCU, thereby saving-
power. The AVR provides various sleep modes allowing the user to tailor the power
consumption to the application’s requirements.

Figure 9-1 on page 30 presents the different clock systems in the
ATmega169A/169PA/329A/329PA/3290A/3290PA/649A/649P/6490A/6490P, and their distribu-
tion. The figure is helpful in selecting an appropriate sleep mode. Table 10-1 shows the different
sleep modes and their wake up sources and BOD disable ability(").

Note: 1. BOD disable is only available for ATmega169PA/329PA/3290PA/6490P.

Table 10-1. Active Clock Domains and Wake-up Sources in the Different Sleep Modes.
Active Clock Domains Oscillators Wake-up Sources
3 s
- %) 8 %
- Sui| 2 s el £§ 8 o 03
- o T c ® © = = fe—-L4
) 2 Q s S8 =2 S§5| 53 < | Y . go
a 3] =) = o = [
Sl F 2 £ £ §3| ES| E=| a5| 85| E| £8| 8| £o| &6
Sleep Mode] © O] S| =w| Fuw| €& 20| a0 | oo <| O=| vnm
Idle X X X X X@ X X X X X X X
ADC NRM X X X X@ | x® X X@ | x@ X X
Power-down X® X X
Power-save X X X® X X X
Standby!" X X® X X

Notes: 1. Only recommended with external crystal or resonator selected as clock source.
2. If either LCD controller or Timer/Counter2 is running in asynchronous mode.
3. For INTO, only level interrupt.

To enter any of the sleep modes, the SE bit in SMCR must be written to logic one and a SLEEP
instruction must be executed. The SM2, SM1, and SMO bits in the SMCR Register select which
sleep mode will be activated by the SLEEP instruction. See Table 10-2 on page 45 for a
summary.

If an enabled interrupt occurs while the MCU is in a sleep mode, the MCU wakes up. The MCU
is then halted for four cycles in addition to the start-up time, executes the interrupt routine, and
resumes execution from the instruction following SLEEP. The contents of the Register File and
SRAM are unaltered when the device wakes up from sleep. If a reset occurs during sleep mode,
the MCU wakes up and executes from the Reset Vector.

10.3 BOD Disable!"

8284D-AVR-6/11

When the Brown-out Detector (BOD) is enabled by BODLEVEL fuses - see Table 28-4 on page
312 and onwards, the BOD is actively monitoring the power supply voltage during a sleep
period. To save power, it is possible to disable the BOD by software for some of the sleep-
modes, see Table 10-1 on page 40. The sleep mode power consumption will then be at the

AIMEL 4

&

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

10.4

Idle Mode

same level as when BOD is globally disabled by fuses. If BOD is disabled in software, the BOD
function is turned off immediately after entering the sleep mode. Upon wake-up from sleep, BOD
is automatically enabled again. This ensures safe operation in case the VCC level has dropped
during the sleep period.

When the BOD has been disabled, the wake-up time from sleep mode will be approximately 60
ps to ensure that the BOD is working correctly before the MCU continues executing code. BOD
disable is controlled by bit 6, BODS (BOD Sleep) in the control register MCUCR, see "MCUCR —
MCU Control Register” on page 45. Writing this bit to one turns off the BOD in relevant sleep
modes, while a zero in this bit keeps BOD active. Default setting keeps BOD active, i.e. BODS
set to zero.

Writing to the BODS bit is controlled by a timed sequence and an enable bit, see "MCUCR —
MCU Control Register’ on page 45.

Note: 1. BOD disable only available in picoPower devices ATmega169A/329PA/3290PA/649P/6490P.

When the SM2:0 bits are written to 000, the SLEEP instruction makes the MCU enter Idle mode,
stopping the CPU but allowing LCD controller, the SPI, USART, Analog Comparator, ADC, USI,
Timer/Counters, Watchdog, and the interrupt system to continue operating. This sleep mode
basically halts clkspy and clkg gy, While allowing the other clocks to run.

Idle mode enables the MCU to wake up from external triggered interrupts as well as internal
ones like the Timer Overflow and USART Transmit Complete interrupts. If wake-up from the
Analog Comparator interrupt is not required, the Analog Comparator can be powered down by
setting the ACD bit in the Analog Comparator Control and Status Register — ACSR. This will
reduce power consumption in Idle mode. If the ADC is enabled, a conversion starts automati-
cally when this mode is entered.

10.5 ADC Noise Reduction Mode

When the SM2:0 bits are written to 001, the SLEEP instruction makes the MCU enter ADC
Noise Reduction mode, stopping the CPU but allowing the ADC, the external interrupts, the USI
start condition detection, Timer/Counter2, LCD Controller, and the Watchdog to continue operat-
ing (if enabled). This sleep mode basically halts clk,q, clkgpy, and clkg agn, While allowing the
other clocks to run.

This improves the noise environment for the ADC, enabling higher resolution measurements. If
the ADC is enabled, a conversion starts automatically when this mode is entered. Apart form the
ADC Conversion Complete interrupt, only an External Reset, a Watchdog Reset, a Brown-out
Reset, an LCD controller interrupt, USI start condition interrupt, a Timer/Counter2 interrupt, an
SPM/EEPROM ready interrupt, an external level interrupt on INTO or a pin change interrupt can
wake up the MCU from ADC Noise Reduction mode.

10.6 Power-down Mode

8284D-AVR-6/11

When the SM2:0 bits are written to 010, the SLEEP instruction makes the MCU enter Power-
down mode. In this mode, the external Oscillator is stopped, while the external interrupts, the
USI start condition detection, and the Watchdog continue operating (if enabled). Only an Exter-
nal Reset, a Watchdog Reset, a Brown-out Reset, USI start condition interrupt, an external level

AIMEL 4

&

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

interrupt on INTO, or a pin change interrupt can wake up the MCU. This sleep mode basically
halts all generated clocks, allowing operation of asynchronous modules only.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed
level must be held for some time to wake up the MCU. Refer to "External Interrupts” on page 61
for details.

When waking up from Power-down mode, there is a delay from the wake-up condition occurs
until the wake-up becomes effective. This allows the clock to restart and become stable after
having been stopped. The wake-up period is defined by the same CKSEL Fuses that define the
Reset Time-out period, as described in "Clock Sources” on page 31.

10.7 Power-save Mode

When the SM2:0 bits are written to 011, the SLEEP instruction makes the MCU enter Power-
save mode. This mode is identical to Power-down, with one exception:

If Timer/Counter2 and/or the LCD controller are enabled, they will keep running during sleep.
The device can wake up from either Timer Overflow or Output Compare event from
Timer/Counter2 if the corresponding Timer/Counter2 interrupt enable bits are set in TIMSK2,
and the Global Interrupt Enable bit in SREG is set. It can also wake up from an LCD controller
interrupt.

If neither Timer/Counter2 nor the LCD controller is running, Power-down mode is recommended
instead of Power-save mode.

The LCD controller and Timer/Counter2 can be clocked both synchronously and asynchronously
in Power-save mode. The clock source for the two modules can be selected independent of
each other. If neither the LCD controller nor the Timer/Counter2 is using the asynchronous
clock, the Timer/Counter Oscillator is stopped during sleep. If neither the LCD controller nor the
Timer/Counter2 is using the synchronous clock, the clock source is stopped during sleep. Note
that even if the synchronous clock is running in Power-save, this clock is only available for the
LCD controller and Timer/Counter2.

10.8 Standby Mode

When the SM2:0 bits are 110 and an external crystal/resonator clock option is selected, the
SLEEP instruction makes the MCU enter Standby mode. This mode is identical to Power-down
with the exception that the Oscillator is kept running. From Standby mode, the device wakes up
in six clock cycles.

10.9 Power Reduction Register

The Power Reduction Register (PRR), see "PRR — Power Reduction Register” on page 46, pro-
vides a method to stop the clock to individual peripherals to reduce power consumption. The
current state of the peripheral is frozen and the 1/O registers can not be read or written.
Resources used by the peripheral when stopping the clock will remain occupied, hence the
peripheral should in most cases be disabled before stopping the clock. Waking up a module,
which is done by clearing the bit in PRR, puts the module in the same state as before shutdown.

Module shutdown can be used in Idle mode and Active mode to significantly reduce the overall
power consumption. See "ATmega169A: Supply Current of /0O modules” on page 364 for exam-
ples. In all other sleep modes, the clock is already stopped.

AIMEL 42

8284D-AVR-6/11 L

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

10.10 Minimizing Power Consumption

There are several issues to consider when trying to minimize the power consumption in an AVR
controlled system. In general, sleep modes should be used as much as possible, and the sleep
mode should be selected so that as few as possible of the device’s functions are operating. All
functions not needed should be disabled. In particular, the following modules may need special
consideration when trying to achieve the lowest possible power consumption.

10.10.1 Analog to Digital Converter

If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should be dis-
abled before entering any sleep mode. When the ADC is turned off and on again, the next
conversion will be an extended conversion. Refer to "Analog to Digital Converter” on page 219
for details on ADC operation.

10.10.2 Analog Comparator

When entering ldle mode, the Analog Comparator should be disabled if not used. When entering
ADC Noise Reduction mode, the Analog Comparator should be disabled. In other sleep modes,
the Analog Comparator is automatically disabled. However, if the Analog Comparator is set up
to use the Internal Voltage Reference as input, the Analog Comparator should be disabled in all
sleep modes. Otherwise, the Internal Voltage Reference will be enabled, independent of sleep
mode. Refer to "Analog Comparator” on page 216 for details on how to configure the Analog
Comparator.

10.10.3 Brown-out Detector

If the Brown-out Detector is not needed by the application, this module should be turned off. If
the Brown-out Detector is enabled by the BODLEVEL Fuses, it will be enabled in all sleep
modes, and hence, always consume power. In the deeper sleep modes, this will contribute sig-
nificantly to the total current consumption. Refer to "Brown-out Detection” on page 50 for details
on how to configure the Brown-out Detector.

10.10.4 Internal Voltage Reference

The Internal Voltage Reference will be enabled when needed by the Brown-out Detection, the
Analog Comparator or the ADC. If these modules are disabled as described in the sections
above, the internal voltage reference will be disabled and it will not be consuming power. When
turned on again, the user must allow the reference to start up before the output is used. If the
reference is kept on in sleep mode, the output can be used immediately. Refer to "Internal Volt-
age Reference” on page 51 for details on the start-up time.

10.10.5 Watchdog Timer

If the Watchdog Timer is not needed in the application, the module should be turned off. If the
Watchdog Timer is enabled, it will be enabled in all sleep modes, and hence, always consume
power. In the deeper sleep modes, this will contribute significantly to the total current consump-
tion. Refer to "Watchdog Timer” on page 51 for details on how to configure the Watchdog Timer.

AIMEL 43

8284D-AVR-6/11 L

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

10.10.6 Port Pins

When entering a sleep mode, all port pins should be configured to use minimum power. The
most important is then to ensure that no pins drive resistive loads. In sleep modes where both
the 1/0 clock (clk,o) and the ADC clock (clkapc) are stopped, the input buffers of the device will
be disabled. This ensures that no power is consumed by the input logic when not needed. In
some cases, the input logic is needed for detecting wake-up conditions, and it will then be
enabled. Refer to the section "Digital Input Enable and Sleep Modes” on page 70 for details on
which pins are enabled. If the input buffer is enabled and the input signal is left floating or have
an analog signal level close to V¢/2, the input buffer will use excessive power.

For analog input pins, the digital input buffer should be disabled at all times. An analog signal
level close to Vc/2 on an input pin can cause significant current even in active mode. Digital
input buffers can be disabled by writing to the Digital Input Disable Registers (DIDR1 and
DIDRO). Refer to "DIDR1 — Digital Input Disable Register 1” on page 218 and "DIDR1 — Digital
Input Disable Register 1” on page 218 for details.

10.10.7 JTAG Interface and On-chip Debug System

8284D-AVR-6/11

If the On-chip debug system is enabled by the OCDEN Fuse and the chip enter Power down or
Power save sleep mode, the main clock source remains enabled. In these sleep modes, this will
contribute significantly to the total current consumption. There are three alternative ways to
avoid this:

¢ Disable OCDEN Fuse.
¢ Disable JTAGEN Fuse.
¢ Write one to the JTD bit in MCUCSR.

The TDO pin is left floating when the JTAG interface is enabled while the JTAG TAP controller is
not shifting data. If the hardware connected to the TDO pin does not pull up the logic level,
power consumption will increase. Note that the TDI pin for the next device in the scan chain con-
tains a pull-up that avoids this problem. Writing the JTD bit in the MCUCSR register to one or
leaving the JTAG fuse unprogrammed disables the JTAG interface.

AIMEL 4

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

10.11 Register Description
10.11.1 SMCR - Sleep Mode Control Register

The Sleep Mode Control Register contains control bits for power management.

Bit 7 6 5 4 3 2 1 0
o333 | - | - | - | - | sm2 | smi | swmo | sE | smcr
Read/Write R R R R R/W RIW RIW R/W

Initial Value 0 0 0 0 0 0 0 0

e Bits 3, 2, 1 — SM2:0: Sleep Mode Select Bits 2, 1, and 0
These bits select between the five available sleep modes as shown in Table 10-2.

Table 10-2. Sleep Mode Select

SM2 SM1 SMo Sleep Mode
0 0 0 Idle
0 0 1 ADC Noise Reduction
0 1 0 Power-down
0 1 1 Power-save
1 0 0 Reserved
1 0 1 Reserved
1 1 0 Standby!"
1 1 1 Reserved

Note: 1. Standby mode is only recommended for use with external crystals or resonators.

e Bit 0 — SE: Sleep Enable

The SE bit must be written to logic one to make the MCU enter the sleep mode when the SLEEP
instruction is executed. To avoid the MCU entering the sleep mode unless it is the programmer’s
purpose, it is recommended to write the Sleep Enable (SE) bit to one just before the execution of
the SLEEP instruction and to clear it immediately after waking up.

10.11.2 MCUCR - MCU Control Register

Bit 7 6 5 4 3 2 1 0
0x35 (0x55) | JTD BODS™ BODSE(" PUD - - IVSEL IVCE | MCUCR
Read/Write R/W R/W R/W R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Note: 1. Only available in the picoPower devices ATmega169PA/329PA/3290PA/649P/6490P.

e Bit 6 — BODS: BOD Sleep

The BODS bit must be written to logic one in order to turn off BOD during sleep, see Table 10-1
on page 40. Writing to the BODS bit is controlled by a timed sequence and an enable bit,
BODSE in MCUCR. To disable BOD in relevant sleep modes, both BODS and BODSE must first
be set to one. Then, to set the BODS bit, BODS must be set to one and BODSE must be set to
zero within four clock cycles.

AIMEL 4

8284D-AVR-6/11 L

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

The BODS bit is active three clock cycles after it is set. A sleep instruction must be executed
while BODS is active in order to turn off the BOD for the actual sleep mode. The BODS bit is
automatically cleared after three clock cycles.

e Bit 5 - BODSE: BOD Sleep Enable
BODSE enables setting of BODS control bit, as explained in BODS bit description. BOD disable
is controlled by a timed sequence.

10.11.3 PRR - Power Reduction Register

8284D-AVR-6/11

Bit 7 6 5 4 3 2 1 0

(0x64) I = = = PRLCD PRTIM1 PRSPI PRUSARTO0 PRADC I PRR
Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7:5 - Reserved
These bits are reserved and will always read as zero.

e Bit 4 - PRLCD: Power Reduction LCD

Writing logic one to this bit shuts down the LCD controller. The LCD controller must be disabled
and the display discharged before shut down. See "Disabling the LCD” on page 246 for details
on how to disable the LCD controller.

¢ Bit 3 - PRTIM1: Power Reduction Timer/Counter1
Writing a logic one to this bit shuts down the Timer/Counter1 module. When the Timer/Counter1
is enabled, operation will continue like before the shutdown.

¢ Bit 2 - PRSPI: Power Reduction Serial Peripheral Interface

Writing a logic one to this bit shuts down the Serial Peripheral Interface by stopping the clock to
the module. When waking up the SPI again, the SPI should be re initialized to ensure proper
operation.

* Bit 1 - PRUSARTO: Power Reduction USARTO0
Writing a logic one to this bit shuts down the USART by stopping the clock to the module. When
waking up the USART again, the USART should be re initialized to ensure proper operation.

e Bit 0 - PRADC: Power Reduction ADC
Writing a logic one to this bit shuts down the ADC. The ADC must be disabled before shut down.
The analog comparator cannot use the ADC input MUX when the ADC is shut down.

Note: The Analog Comparator is disabled using the ACD-bit in the "ACSR — Analog Comparator Control
and Status Register” on page 217.

AIMEL 4

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

11. System Control and Reset

11.1 Resetting the AVR

During reset, all I/0 Registers are set to their initial values, and the program starts execution
from the Reset Vector. The instruction placed at the Reset Vector must be a JMP — Absolute
Jump — instruction to the reset handling routine. If the program never enables an interrupt
source, the Interrupt Vectors are not used, and regular program code can be placed at these
locations. This is also the case if the Reset Vector is in the Application section while the Interrupt
Vectors are in the Boot section or vice versa. The circuit diagram in "Reset Logic” on page 48
shows the reset logic. "System and Reset Characteristics” on page 353 defines the electrical
parameters of the reset circuitry.

The 1/O ports of the AVR are immediately reset to their initial state when a reset source goes
active. This does not require any clock source to be running.

After all reset sources have gone inactive, a delay counter is invoked, stretching the internal
reset. This allows the power to reach a stable level before normal operation starts. The time-out
period of the delay counter is defined by the user through the SUT and CKSEL Fuses. The dif-
ferent selections for the delay period are presented in "Clock Sources” on page 31.

11.2 Reset Sources

8284D-AVR-6/11

The ATmega169A/169PA/329A/329PA/3290A/3290PA/649A/649P/6490A/6490P has five
sources of reset:

* Power-on Reset. The MCU is reset when the supply voltage is below the Power-on Reset
threshold (Vpor).

» External Reset. The MCU is reset when a low level is present on the RESET pin for longer than
the minimum pulse length.

* Watchdog Reset. The MCU is reset when the Watchdog Timer period expires and the
Watchdog is enabled.

* Brown-out Reset. The MCU is reset when the supply voltage V¢ is below the Brown-out Reset
threshold (Vzo7) and the Brown-out Detector is enabled.

* JTAG AVR Reset. The MCU is reset as long as there is a logic one in the Reset Register, one
of the scan chains of the JTAG system. Refer to the section ”IEEE 1149.1 (JTAG) Boundary-
scan” on page 261 for details.

AIMEL 47

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

Figure 11-1. Reset Logic

DATA BUS
A

MCU Status
Register (MCUSR)

T
| o
O| O
a|m

[T
o
=
]

EXTRF
WDRF

vee Power-lon Beset
Circuit

Brown-out
5| Reset Circuit

[l] Pull-up Resistor
RESET SPIKE Reset Circuit s Qf

FILTER

BODLEVEL [2..0]

11T
v

COUNTER RESET

INTERNAL RESET

[

JTAG Reset Watchdog
Register Timer

i

Watchdog

Oscillator

Clock CK Delay Counters I
Generator TIMEOUT

A A A

<
<

Y

CKSEL[3:0]
SUT[1:0]

11.2.1 Power-on Reset

A Power-on Reset (POR) pulse is generated by an On-chip detection circuit. The detection level
is defined in "System and Reset Characteristics” on page 353. The POR is activated whenever
Vcc is below the detection level. The POR circuit can be used to trigger the start-up Reset, as
well as to detect a failure in supply voltage.

A Power-on Reset (POR) circuit ensures that the device is reset from Power-on. Reaching the
Power-on Reset threshold voltage invokes the delay counter, which determines how long the
device is kept in RESET after V rise. The RESET signal is activated again, without any delay,
when V; decreases below the detection level.

AIMEL 4

8284D-AVR-6/11 L

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

Figure 11-2. MCU Start-up, RESET Tied to V¢

1
-2~ Veor

1
1
1
:
1
7Y
RESET J RT

——— trour ——>

TIME-OUT

INTERNAL
RESET

Figure 11-3. MCU Start-up, RESET Extended Externally

1
-~ Veor

1
1
| \
1 1
1 1,
A
RESET ! v RST
l l
1 1
1 1
TIME-OUT | . trour
: :
1 1
1 1
1 1
1 1
INTERNAL I
RESET :

11.2.2 External Reset

An External Reset is generated by a low level on the RESET pin. Reset pulses longer than the
minimum pulse width (see "System and Reset Characteristics” on page 353) will generate a
reset, even if the clock is not running. Shorter pulses are not guaranteed to generate a reset.
When the applied signal reaches the Reset Threshold Voltage — Vzg — 0n its positive edge, the
delay counter starts the MCU after the Time-out period — t;o;1 —has expired.

Figure 11-4. External Reset During Operation

Vee
RESET 1 1
J
1 1
1 1
1 1
1 1
| < trour —>
TIME-OUT : !
1
1
1
|
INTERNAL
RESET

AIMEL 49

8284D-AVR-6/11 L

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

11.2.3 Brown-out Detection

ATmega169A/169PA/329A/329PA/3290A/3290PA/649A/649P/6490A/6490P has an On-chip
Brown-out Detection (BOD) circuit for monitoring the V¢ level during operation by comparing it
to a fixed trigger level. The trigger level for the BOD can be selected by the BODLEVEL Fuses.
The trigger level has a hysteresis to ensure spike free Brown-out Detection. The hysteresis on
the detection level should be interpreted as Vgot, = Vot + Vhyst/2 and Vgor. = Vgor -
Vuvst/2.When the BOD is enabled, and V¢ decreases to a value below the trigger level (Vgor.
in Figure 11-5), the Brown-out Reset is immediately activated. When V. increases above the
trigger level (Vgor, in Figure 11-5), the delay counter starts the MCU after the Time-out period
trout has expired.

The BOD circuit will only detect a drop in V. if the voltage stays below the trigger level for lon-
ger than tzop given in "System and Reset Characteristics” on page 353.

Figure 11-5. Brown-out Reset During Operation

v S i Veor
e VBOT-”’I ******** s ’

1 1
1 1
1 1
RESET : :
1 1
1 1
1 1
1 1
1 1

TIME-OUT ! < trout
| |
1 1
1 1
INTERNAL ' |
RESET i |

11.24 Watchdog Reset

When the Watchdog times out, it will generate a short reset pulse of one CK cycle duration. On
the falling edge of this pulse, the delay timer starts counting the Time-out period t;o, 7. Refer to
"Watchdog Timer” on page 51 for details on operation of the Watchdog Timer.

Figure 11-6. Watchdog Reset During Operation

Vee
RESET
WDT —>, «— 1 CKCycle
TIME-OUT H
o
[}
[}
RESET | trour
TIME-OUT |
1

INTERNAL |
RESET

AIMEL 50

8284D-AVR-6/11 —

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

11.3 Internal Voltage Reference

ATmega169A/169PA/329A/329PA/3290A/3290PA/649A/649P/6490A/6490P features an inter-
nal bandgap reference. This reference is used for Brown-out Detection, and it can be used as an
input to the Analog Comparator or the ADC.

11.3.1 Voltage Reference Enable Signals and Start-up Time

The voltage reference has a start-up time that may influence the way it should be used. The
start-up time is given in "System and Reset Characteristics” on page 353. To save power, the
reference is not always turned on. The reference is on during the following situations:

1. When the BOD is enabled (by programming the BODLEVEL [2:0] Fuse).
2. When the bandgap reference is connected to the Analog Comparator (by setting the

ACBG bit in ACSR).
3. When the ADC is enabled.
Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC, the user
must always allow the reference to start up before the output from the Analog Comparator or
ADC is used. To reduce power consumption in Power-down mode, the user can avoid the three
conditions above to ensure that the reference is turned off before entering Power-down mode.

11.4 Watchdog Timer

8284D-AVR-6/11

The Watchdog Timer is clocked from a separate On-chip Oscillator which runs at 1 MHz. This is
the typical value at V; = 5V. See characterization data for typical values at other V. levels. By
controlling the Watchdog Timer prescaler, the Watchdog Reset interval can be adjusted as
shown in Table 11-2 on page 54. The WDR — Watchdog Reset — instruction resets the Watch-
dog Timer. The Watchdog Timer is also reset when it is disabled and when a Chip Reset occurs.
Eight different clock cycle periods can be selected to determine the reset period. If the reset
period expires without another Watchdog Reset, the
ATmega169A/169PA/329A/329PA/3290A/3290PA/649A/649P/6490A/6490P resets and exe-
cutes from the Reset Vector. For timing details on the Watchdog Reset, refer to Table 11-2 on
page 54.

To prevent unintentional disabling of the Watchdog or unintentional change of time-out period,
two different safety levels are selected by the fuse WDTON as shown in Table 11-1. Refer to
"Timed Sequences for Changing the Configuration of the Watchdog Timer” on page 52 for
details.

Table 11-1. WDT Configuration as a Function of the Fuse Settings of WDTON

Safety WDT Initial How to Disable the How to Change Time-
WDTON Level State wWDT out
Unprogrammed 1 Disabled Timed sequence Timed sequence
Programmed 2 Enabled Always enabled Timed sequence

AIMEL 51

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

11.4.1

11.4.2

11.4.3

Figure 11-7. Watchdog Timer

WATCHDOG o WATCHDOG
OSCILLATOR > PRESCALER
S5 35 8|85(3|8
WATCHDOG HEEHEEERE
RESET ©|o|°|8|8
Y V VY A
WDPO 9&
WDP1 o\
WDP2
WDE

MCU RESET

Timed Sequences for Changing the Configuration of the Watchdog Timer

Safety Level 1

Safety Level 2

8284D-AVR-6/11

The sequence for changing configuration differs slightly between the two safety levels. Separate
procedures are described for each level.

In this mode, the Watchdog Timer is initially disabled, but can be enabled by writing the WDE bit
to 1 without any restriction. A timed sequence is needed when changing the Watchdog Time-out
period or disabling an enabled Watchdog Timer. To disable an enabled Watchdog Timer, and/or
changing the Watchdog Time-out, the following procedure must be followed:

1. In the same operation, write a logic one to WDCE and WDE. A logic one must be written
to WDE regardless of the previous value of the WDE bit.

2. Within the next four clock cycles, in the same operation, write the WDE and WDP bits as
desired, but with the WDCE bit cleared.

In this mode, the Watchdog Timer is always enabled, and the WDE bit will always read as one. A
timed sequence is needed when changing the Watchdog Time-out period. To change the
Watchdog Time-out, the following procedure must be followed:

1. In the same operation, write a logical one to WDCE and WDE. Even though the WDE
always is set, the WDE must be written to one to start the timed sequence.

Within the next four clock cycles, in the same operation, write the WDP bits as desired, but with
the WDCE bit cleared. The value written to the WDE bit is irrelevant.

AIMEL 52

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

11.5 Register Description
11.5.1 MCUSR - MCU Status Register

The MCU Status Register provides information on which reset source caused an MCU reset.

Bit 7 6 5 4 3 2 1 0

0x35 (0x55) | - | - | - | JTRF | WDRF | BORF | EXTRF | PORF | MCUSR
Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 See Bit Description

e Bit4 — JTRF: JTAG Reset Flag

This bit is set if a reset is being caused by a logic one in the JTAG Reset Register selected by
the JTAG instruction AVR_RESET. This bit is reset by a Power-on Reset, or by writing a logic
zero to the flag.

¢ Bit 3 - WDRF: Watchdog Reset Flag

This bit is set if a Watchdog Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.

* Bit 2 - BORF: Brown-out Reset Flag

This bit is set if a Brown-out Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.

e Bit 1 — EXTRF: External Reset Flag

This bit is set if an External Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.

e Bit 0 — PORF: Power-on Reset Flag
This bit is set if a Power-on Reset occurs. The bit is reset only by writing a logic zero to the flag.

To make use of the Reset Flags to identify a reset condition, the user should read and then
Reset the MCUSR as early as possible in the program. If the register is cleared before another
reset occurs, the source of the reset can be found by examining the Reset Flags.

11.5.2 WDTCR - Watchdog Timer Control Register

Bit 7 6 5 4 3 2 1 0

(0x60) | - | | - WDCE WDE WDP2 WDP1 WDPO | WDTCR
Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

* Bits 7:5 — Reserved
These bits are reserved and will always read as zero.

e Bit 4 — WDCE: Watchdog Change Enable

This bit must be set when the WDE bit is written to logic zero. Otherwise, the Watchdog will not
be disabled. Once written to one, hardware will clear this bit after four clock cycles. Refer to the
description of the WDE bit for a Watchdog disable procedure. This bit must also be set when
changing the prescaler bits. "Timed Sequences for Changing the Configuration of the Watchdog
Timer” on page 52

AIMEL 53

8284D-AVR-6/11 L

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

8284D-AVR-6/11

¢ Bit 3 - WDE: Watchdog Enable

When the WDE is written to logic one, the Watchdog Timer is enabled, and if the WDE is written
to logic zero, the Watchdog Timer function is disabled. WDE can only be cleared if the WDCE bit
has logic level one. To disable an enabled Watchdog Timer, the following procedure must be
followed:

1. In the same operation, write a logic one to WDCE and WDE. A logic one must be written
to WDE even though it is set to one before the disable operation starts.

2. Within the next four clock cycles, write a logic 0 to WDE. This disables the Watchdog.

In safety level 2, it is not possible to disable the Watchdog Timer, even with the algorithm
described above. "Timed Sequences for Changing the Configuration of the Watchdog Timer” on
page 52.

e Bits 2:0 - WDP2, WDP1, WDPO: Watchdog Timer Prescaler 2, 1, and 0

The WDP2, WDP1, and WDPQO bits determine the Watchdog Timer prescaling when the Watch-
dog Timer is enabled. The different prescaling values and their corresponding Time-out Periods
are shown in Table 11-2.

Table 11-2. Watchdog Timer Prescale Select

Number of WDT Typical Time-out at | Typical Time-out at
WDP2 | WDP1 | WDPO Oscillator Cycles Vce = 3.0V Vee = 5.0V
0 0 0 16K cycles 17.1ms 16.3ms
0 0 1 32K cycles 34.3ms 32.5ms
0 1 0 64K cycles 68.5ms 65ms
0 1 1 128K cycles 0.14s 0.13s
1 0 0 256K cycles 0.27s 0.26s
1 0 1 512K cycles 0.55s 0.52s
1 1 0 1,024K cycles 1.1s 1.0s
1 1 1 2,048K cycles 2.2s 2.1s

AIMEL 54

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

The following code example shows one assembly and one C function for turning off the WDT.
The example assumes that interrupts are controlled (e.g. by disabling interrupts globally) so that
no interrupts will occur during execution of these functions.

Assembly Code Example"

WDT_off:
; Reset WDT
wdr
; Write logical one to WDCE and WDE
in 1rl16, WDTCR
ori rl6, (1<<WDCE) | (1<<WDE)
out WDTCR, rlé6
; Turn off WDT
1di rl6, (0<<WDE)
out WDTCR, rlé6

ret

C Code Example!")

void WDT off (void)
{
/* Reset WDT */
_ _watchdog_reset () ;
/* Write logical one to WDCE and WDE */
WDTCR |= (1<<WDCE) | (1<<WDE) ;
/* Turn off WDT */
WDTCR = 0x00;

Note: 1. See "About Code Examples” on page 11.

AIMEL 55

8284D-AVR-6/11 L

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

12. Interrupts

12.1 Overview

12.2

8284D-AVR-6/11

This section describes the specifics of the interrupt handling as performed in
ATmega169A/169PA/329A/329PA/3290A/3290PA/649A/649P/6490A/6490P. For a general

explanation of the AVR interrupt handling, refer to "Reset and Interrupt Handling” on page 18.

Interrupt Vectors

Table 12-1. Reset and Interrupt Vectors
Vector Program

No. Address® | Source Interrupt Definition
1| 000" | RESET Watahdog Recet, and JTAG AV Reset
2 0x0002 INTO External Interrupt Request 0
3 0x0004 PCINTO Pin Change Interrupt Request 0
4 0x0006 PCINTA Pin Change Interrupt Request 1
5 0x0008 TIMER2 COMP Timer/Counter2 Compare Match
6 0x000A TIMER2 OVF Timer/Counter2 Overflow
7 0x000C TIMER1 CAPT Timer/Counter1 Capture Event
8 0x000E TIMER1 COMPA Timer/Counter1 Compare Match A
9 0x0010 TIMER1 COMPB Timer/Counter1i Compare Match B
10 0x0012 TIMER1 OVF Timer/Counter1 Overflow

11 0x0014 TIMERO COMP Timer/Counter0 Compare Match
12 0x0016 TIMERO OVF Timer/Counter0 Overflow

13 0x0018 SPI, STC SPI Serial Transfer Complete

14 0x001A USART, RX USARTO, Rx Complete

15 0x001C USART, UDRE USARTO Data Register Empty

16 0x001E USART, TX USARTO, Tx Complete

17 0x0020 USI START USI Start Condition

18 0x0022 USI OVERFLOW USI Overflow

19 0x0024 ANALOG COMP Analog Comparator

20 0x0026 ADC ADC Conversion Complete

21 0x0028 EE READY EEPROM Ready

22 0x002A SPM READY Store Program Memory Ready

23 0x002C LCD LCD Start of Frame

24 0x002E PCINT2 Pin Change Interrupt Request 2

250) 0x0030 PCINT3 Pin Change Interrupt Request 3

Notes: 1. When the BOOTRST Fuse is programmed, the device will jump to the Boot Loader address at reset, see

"Boot Loader Support — Read-While-Write Self-Programming” on page 294.

AIMEL

&

56

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

3.

When the IVSEL bit in MCUCR is set, Interrupt Vectors will be moved to the start of the Boot Flash Sec-

tion. The address of each Interrupt Vector will then be the address in this table added to the start address
of the Boot Flash Section.
PCINT2 and PCINTS are only present in ATmega3290A/3290PA/6490A/6490P

Table 12-2 shows reset and Interrupt Vectors placement for the various combinations of
BOOTRST and IVSEL settings. If the program never enables an interrupt source, the Interrupt
Vectors are not used, and regular program code can be placed at these locations. This is also
the case if the Reset Vector is in the Application section while the Interrupt Vectors are in the
Boot section or vice versa.

Table 12-2. Reset and Interrupt Vectors Placement(!)
BOOTRST IVSEL Reset Address Interrupt Vectors Start Address
1 0 0x0000 0x0002
1 1 0x0000 Boot Reset Address + 0x0002
0 0 Boot Reset Address 0x0002
0 1 Boot Reset Address Boot Reset Address + 0x0002
Note: 1. The Boot Reset Address is shown in Table 27-9 on page 306. For the BOOTRST Fuse “1” means unpro-

Address
0x0000
0x0002
0x0004
0x0006
0x0008
0x000A
0x000C
0x000E
0x0010
0x0012
0x0014
0x0016
0X0018
0x001A
0x001C
0x001E
0x0020
0x0022
0x0024
0x0026
0x0028
0x002A
0x002C
0x002E
0x0030
0x0032
0x0033
0x0034
0x0035

grammed while “0” means programmed.

The most typical and general program setup for the Reset and Interrupt Vector Addresses in
ATmega169A/169PA/329A/329PA/3290A/3290PA/649A/649P/6490A/6490P is:

Labels

RESET:

8284D-AVR-6/11

Code
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp

1di
out
1di

out

AIMEL

&

RESET
EXT_INTO
PCINTO
PCINT1
TIM2_COMP
TIM2_OVF
TIM1_CAPT
TIM1_COMPA
TIM1_COMPB
TIM1_OVF
TIMO_COMP
TIMO_OVF
SPI_STC
USART_RXC
USART_UDRE
USART_TXC
USI_STRT
USI_OVF
ANA_COMP
ADC

EE_RDY
SPM_RDY
LCD_SOF
PCINT2
PCINT3

Comments

i

i

rl6, high(RAMEND) ;

SPH,rl6
rl6, low(RAMEND)
SPL,rl6

Reset Handler

IRQO0 Handler

PCINTO Handler

PCINT1 Handler

Timer2 Compare Handler
Timer2 Overflow Handler
Timerl Capture Handler
Timerl CompareA Handler
Timerl CompareB Handler
Timerl Overflow Handler
Timer(0 Compare Handler
Timer0 Overflow Handler

SPI Transfer Complete Handler
USARTO RX Complete Handler
USARTO0,UDRO Empty Handler
USARTO0 TX Complete Handler
USI Start Condition Handler
USI Overflow Handler

Analog Comparator Handler
ADC Conversion Complete Handler
EEPROM Ready Handler

SPM Ready Handler

LCD Start of Frame Handler
PCINT2 Handler

PCINT3 Handler

Main program start

Set Stack Pointer to top of RAM

57

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

0x0036 sei ; Enable interrupts

0x0037 <instr> XXX

When the BOOTRST Fuse is unprogrammed, the Boot section size set to 4K bytes and the
IVSEL bit in the MCUCR Register is set before any interrupts are enabled, the most typical and
general program setup for the Reset and Interrupt Vector Addresses is:

Address Labels Code Comments

0x0000 RESET: 1di rl6,high(RAMEND); Main program start

0x0001 out SPH,rl6 ; Set Stack Pointer to top of RAM
0x0002 1di rl6,low (RAMEND)

0x0003 out SPL,rl6

0x0004 sel ; Enable interrupts

0x0005 <instr> xxx

.org 0x3802/0x7802

0x3804/0x7804 jmp EXT_INTO ; IRQO0 Handler
0x3806/0x7806 jmp PCINTO ; PCINTO Handler
0x1c2C Jjmp SPM_RDY ; Store Program Memory Ready Handler

When the BOOTRST Fuse is programmed and the Boot section size set to 4K bytes, the most
typical and general program setup for the Reset and Interrupt Vector Addresses is:

Address Labels Code Comments

.org 0x0002

0x0002 Jjmp EXT_ INTO ; IRQ0 Handler

0x0004 Jjmp PCINTO ; PCINTO Handler

0x002C Jjmp SPM_RDY ; Store Program Memory Ready Handler

.org 0x3800/0x7800
0x3800/0x7801RESET:1dir16,high (RAMEND) ; Main program start

0x3801/0x7801 out SPH,rl6 ; Set Stack Pointer to top of RAM
0x3802/0x7802 1di rl6, low (RAMEND)

0x3803/0x7803 out SPL,rl6
0x3804/0x7804 sei

0x3805/0x7805 <instr> xxx
When the BOOTRST Fuse is programmed, the Boot section size set to 4K bytes and the IVSEL
bit in the MCUCR Register is set before any interrupts are enabled, the most typical and general
program setup for the Reset and Interrupt Vector Addresses is:

; Enable interrupts

Address Labels Code Comments

.org 0x3800/0x7800

0x3800/0x7800 Jjmp RESET ; Reset handler
0x3802/0x7802 jmp EXT_INTO ; IRQ0 Handler
0x3804/0x7804 Jjmp PCINTO ; PCINTO Handler

AIMEL 58

8284D-AVR-6/11 ——— ——— —]

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

0x382C/0x782C jmp SPM_RDY ; Store Program Memory Ready Handler
0x382E/0x782ERESET:1dirl6,high (RAMEND) ; Main program start
0x382F/0x782F out SPH,rl6 ; Set Stack Pointer to top of RAM
0x3830/0x7830 1di r16, low (RAMEND)

0x3831/0x7831 out SPL,rl6
0x3832/0x7832 seil ; Enable interrupts

0x3833/0x7833 <instr> xxx
12.2.1 Moving Interrupts Between Application and Boot Space

he General Interrupt Control Register controls the placement of the Interrupt Vector table, see
"MCUCR — MCU Control Register” on page 60.

To avoid unintentional changes of Interrupt Vector tables, a special write procedure must be fol-
lowed to change the IVSEL bit:

a. Write the Interrupt Vector Change Enable (IVCE) bit to one.
b. Within four cycles, write the desired value to IVSEL while writing a zero to IVCE.

Interrupts will automatically be disabled while this sequence is executed. Interrupts are disabled
in the cycle IVCE is set, and they remain disabled until after the instruction following the write to
IVSEL. If IVSEL is not written, interrupts remain disabled for four cycles. The I-bit in the Status
Register is unaffected by the automatic disabling.

Note: If Interrupt Vectors are placed in the Boot Loader section and Boot Lock bit BLB02 is programmed,
interrupts are disabled while executing from the Application section. If Interrupt Vectors are placed
in the Application section and Boot Lock bit BLB12 is programed, interrupts are disabled while
executing from the Boot Loader section. Refer to the section "Boot Loader Support — Read-
While-Write Self-Programming” on page 294 for details on Boot Lock bits.

The following example shows how interrupts are moved.

Assembly Code Example

Move_interrupts:

;Get MCUCR

in r16, MCUCR

mov rl7, rlé6
; Enable change of Interrupt Vectors
ori rl6, (1<<IVCE)
out MCUCR, rlé6
; Move interrupts to Boot Flash section
ori rl7, (1<<IVSEL)
out MCUCR, rl7

ret

C Code Example

void Move_interrupts (void)

{
/* Enable change of Interrupt Vectors */
MCUCR |= (1<<IVCE);
/* Move interrupts to Boot Flash section */

MCUCR |= (1<<IVSEL);

AIMEL 59

8284D-AVR-6/11 &

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

12.3 Register Description

12.3.1 MCUCR - MCU Control Register

Bit 7 6 5 4 3 2 1 0
0x35 (0x55) | JTD | BODS!) | BODSE" PUD - - IVSEL IVCE | MCUCR
Read/Write R/W R R R/W R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Note: 1. Only available in the picoPower devices ATmega169PA/329PA/3290PA/649P/6490P.

e Bit 1 — IVSEL: Interrupt Vector Select

When the IVSEL bit is cleared (zero), the Interrupt Vectors are placed at the start of the Flash
memory. When this bit is set (one), the Interrupt Vectors are moved to the beginning of the Boot
Loader section of the Flash. The actual address of the start of the Boot Flash Section is deter-
mined by the BOOTSZ Fuses. Refer to the section "Boot Loader Support — Read-While-Write
Self-Programming” on page 294 for details.

e Bit 0 — IVCE: Interrupt Vector Change Enable

The IVCE bit must be written to logic one to enable change of the IVSEL bit. IVCE is cleared by
hardware four cycles after it is written or when IVSEL is written. Setting the IVCE bit will disable
interrupts, as explained in the description in "Moving Interrupts Between Application and Boot
Space” on page 59. See Code Example.

AIMEL 60

8284D-AVR-6/11 L

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

13. External Interrupts

13.1 Overview

8284D-AVR-6/11

The External Interrupts are triggered by the INTO pin or any of the PCINT30:0 pins‘®. Observe
that, if enabled, the interrupts will trigger even if the INTO or PCINT30:0 pins are configured as
outputs. This feature provides a way of generating a software interrupt. The pin change interrupt
PCI1 will trigger if any enabled PCINT15:8 pin toggles. Pin change interrupts PCIO will trigger if
any enabled PCINT7:0 pin toggles. The PCMSK3", PCMSK2("), PCMSK1, and PCMSKO Reg-
isters control which pins contribute to the pin change interrupts. Pin change interrupts on
PCINT30:0 are detected asynchronously. This implies that these interrupts can be used for wak-
ing the part also from sleep modes other than Idle mode.

The INTO interrupts can be triggered by a falling or rising edge or a low level. This is set up as
indicated in the specification for the "EICRA — External Interrupt Control Register A” on page 62.
When the INTO interrupt is enabled and is configured as level triggered, the interrupt will trigger
as long as the pin is held low. Note that recognition of falling or rising edge interrupts on INTO
requires the presence of an I/O clock, described in "Clock Systems and their Distribution” on
page 30. Low level interrupt on INTO is detected asynchronously. This implies that this interrupt
can be used for waking the part also from sleep modes other than Idle mode. The I/O clock is
halted in all sleep modes except Idle mode.

Note that if a level triggered interrupt is used for wake-up from Power-down, the required level
must be held long enough for the MCU to complete the wake-up to trigger the level interrupt. If
the level disappears before the end of the Start-up Time, the MCU will still wake up, but no inter-
rupt will be generated. The start-up time is defined by the SUT and CKSEL Fuses as described
in "System Clock and Clock Options” on page 30.

Notes: 1. PCMSK3 and PCMSK2 are only present in ATmega3290A/3290PA/6490A/6490P.
2. PCINT30:16 are only present in ATmega3290A/3290PA/6490A/6490P. Only PCINT15:0 are
present in ATmega169A/169PA; ATmega329A/329PA and ATmega649A/649P. See "Pin Con-
figurations” on page 2 and "Register Description” on page 62 for details.

AIMEL 61

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

13.2 Pin Change Interrupt Timing

An example of timing of a pin change interrupt is shown in Figure 13-1.

Figure 13-1. Pin Change Interrupt

cint_in_(0;
PCINT(0) m peint_in(0) 0 pcint_syn pcint_setflag
LE X pin_sync « H PCIF
. O 1]

PCINT(0) in PCMSK(x) N
Cl

clk —l |

PCINT(n)

pin_lat

pin_sync

pcint_in_(n)

pcint_syn

pcint_setflag

PCIF

13.3 Register Description
13.3.1 EICRA - External Interrupt Control Register A

The External Interrupt Control Register A contains control bits for interrupt sense control.

Bit 7 6 5 4 3 2 1 0
(0x69) | - | - | - | - | - | - | Iscot | 1scoo | EICRA
Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit1,0-1SCO01, ISCO00: Interrupt Sense Control 0 Bit 1 and Bit 0

The External Interrupt 0 is activated by the external pin INTO if the SREG I-flag and the corre-
sponding interrupt mask are set. The level and edges on the external INTO pin that activate the
interrupt are defined in Table 13-1 on page 63. The value on the INTO pin is sampled before
detecting edges. If edge or toggle interrupt is selected, pulses that last longer than one clock
period will generate an interrupt. Shorter pulses are not guaranteed to generate an interrupt. If
low level interrupt is selected, the low level must be held until the completion of the currently
executing instruction to generate an interrupt.

AIMEL 62

8284D-AVR-6/11 L

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

Table 13-1. Interrupt 0 Sense Control

ISCO1 ISC00 Description
0 0 The low level of INTO generates an interrupt request.
0 1 Any logical change on INTO generates an interrupt request.
1 0 The falling edge of INTO generates an interrupt request.
1 1 The rising edge of INTO generates an interrupt request.

13.3.2 EIMSK - External Interrupt Mask Register

Bit 7 6 5 4 3 2 1 0
0x1D (0x3D) | PCIE3"™ | PCIE2'" PCIE1 PCIEO = = INTO | EIMSK
Read/Write R/W R/W R/W R/W R R R R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — PCIE3: Pin Change Interrupt Enable 3

When the PCIE3 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin
change interrupt 3 is enabled. Any change on any enabled PCINT30:24 pin will cause an inter-
rupt. The corresponding interrupt of Pin Change Interrupt Request is executed from the PCINT3
Interrupt Vector. PCINT30:24 pins are enabled individually by the PCMSKS3 Register.

Note: 1. This bit is a reserved bit in ATmega169A/169PA/329A/329PA/649A/649P and should always
be written to zero.

e Bit 6 — PCIE2: Pin Change Interrupt Enable 2

When the PCIE2 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin
change interrupt 2 is enabled. Any change on any enabled PCINT23:16 pin will cause an inter-
rupt. The corresponding interrupt of Pin Change Interrupt Request is executed from the PCINT2
Interrupt Vector. PCINT23:16 pins are enabled individually by the PCMSK2 Register.

Note: 1. This bit is a reserved bit in ATmega169A/169PA/329A/329PA/649A/649P and should always
be written to zero.

e Bit 5 - PCIE1: Pin Change Interrupt Enable 1

When the PCIE1 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin
change interrupt 1 is enabled. Any change on any enabled PCINT15:8 pin will cause an inter-
rupt. The corresponding interrupt of Pin Change Interrupt Request is executed from the PCINT1
Interrupt Vector. PCINT15:8 pins are enabled individually by the PCMSK1 Register.

* Bit 4 — PCIEO: Pin Change Interrupt Enable 0

When the PCIEO bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin
change interrupt 0 is enabled. Any change on any enabled PCINT7:0 pin will cause an interrupt.
The corresponding interrupt of Pin Change Interrupt Request is executed from the PCINTO Inter-
rupt Vector. PCINT7:0 pins are enabled individually by the PCMSKO Register.

¢ Bit 0 — INTO: External Interrupt Request 0 Enable

When the INTO bit is set (one) and the I-bit in the Status Register (SREG) is set (one), the exter-
nal pin interrupt is enabled. The Interrupt Sense Control0 bits 1/0 (ISC01 and ISCO00) in the
External Interrupt Control Register A (EICRA) define whether the external interrupt is activated
on rising and/or falling edge of the INTO pin or level sensed. Activity on the pin will cause an

AIMEL 63

8284D-AVR-6/11 L

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

interrupt request even if INTO is configured as an output. The corresponding interrupt of External
Interrupt Request 0 is executed from the INTO Interrupt Vector.

13.3.3 EIFR - External Interrupt Flag Register

Bit 7 6 5 4 3 2 1 0
0x1C (0x3C) | PCIF3(") | PCIF2(") PCIF1 PCIFO - - INTFO | EIFR
Read/Write R/W R/W R/W R/W R R R R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — PCIF3: Pin Change Interrupt Flag 3

When a logic change on any PCINT30:24 pin triggers an interrupt request, PCIF3 becomes set
(one). If the I-bit in SREG and the PCIES bit in EIMSK are set (one), the MCU will jump to the
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-
natively, the flag can be cleared by writing a logical one to it.

Note: 1. This bit is reserved bit in ATmega169A/169PA/329A/329PA/649A/649P and will always be
read as zero.

¢ Bit 6 — PCIF2: Pin Change Interrupt Flag 2

When a logic change on any PCINT24:16 pin triggers an interrupt request, PCIF2 becomes set
(one). If the I-bit in SREG and the PCIE2 bit in EIMSK are set (one), the MCU will jump to the
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-
natively, the flag can be cleared by writing a logical one to it.

Note: 1. This bit is reserved bit in ATmega169A/169PA/329A/329PA/649A/649P and will always be
read as zero.

e Bit 5 - PCIF1: Pin Change Interrupt Flag 1

When a logic change on any PCINT15:8 pin triggers an interrupt request, PCIF1 becomes set
(one). If the I-bit in SREG and the PCIE1 bit in EIMSK are set (one), the MCU will jump to the
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-
natively, the flag can be cleared by writing a logical one to it.

e Bit 4 — PCIFO: Pin Change Interrupt Flag 0

When a logic change on any PCINT7:0 pin triggers an interrupt request, PCIFO becomes set
(one). If the I-bit in SREG and the PCIEOQ bit in EIMSK are set (one), the MCU will jump to the
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-
natively, the flag can be cleared by writing a logical one to it.

¢ Bit 0 — INTFO: External Interrupt Flag 0
When an edge or logic change on the INTO pin triggers an interrupt request, INTFO becomes set
(one). If the I-bit in SREG and the INTO bit in EIMSK are set (one), the MCU will jump to the cor-
responding Interrupt Vector. The flag is cleared when the interrupt routine is executed.
Alternatively, the flag can be cleared by writing a logical one to it. This flag is always cleared
when INTO is configured as a level interrupt.

AIMEL 64

8284D-AVR-6/11 L

e ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P

13.3.4 PCMSKS3 - Pin Change Mask Register 3"

Bit 7 6 5 4 3 2 1 0

(0x73) I = | PCINT30 | PCINT29 PCINT28 PCINT27 PCINT26 PCINT25 PCINT24 I PCMSK3
Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit 6:0 — PCINT30:24: Pin Change Enable Mask 30...24
Each PCINT30:24-bit selects whether pin change interrupt is enabled on the corresponding I/O
pin. If PCINT30:24 is set and the PCIES bit in EIMSK is set, pin change interrupt is enabled on

the corresponding I/O pin. If PCINT30:24 is cleared, pin change interrupt on the corresponding
I/0 pin is disabled.

13.3.5 PCMSK2 - Pin Change Mask Register 2(")

Bit 7 6 5 4 3 2 1 0

(0x6D) I PCINT23 | PCINT22 | PCINT21 PCINT20 | PCINT19 | PCINT18 | PCINT17 | PCINT16 IPCMSKZ
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit 7:0 — PCINT23:16: Pin Change Enable Mask 23:16

Each PCINT23:16 bit selects whether pin change interrupt is enabled on the corresponding I/O
pin. If PCINT23:16 is set and the PCIE2 bit in EIMSK is set, pin change interrupt is enabled on
the corresponding 1/O pin. If PCINT23:16 is cleared, pin change interrupt on the corresponding
I/0 pin is disabled.

13.3.6 PCMSK1 - Pin Change Mask Register 1

Bit 7 6 5 4 3 2 1 0
(0x6C) I PCINT15 | PCINT14 | PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 P